Individuals with type 2 diabetes have an increased risk for developing Alzheimer's disease (AD), although the causal relationship remains poorly understood. Alterations in insulin signaling (IS) are reported in the AD brain. Moreover, oligomers/fibrils of amyloid-β (Aβ) can lead to neuronal insulin resistance and intranasal insulin is being explored as a potential therapy for AD.
View Article and Find Full Text PDFObjective: Deposition of amyloid β (Aβ)-containing plaques as evidenced by amyloid imaging and cerebrospinal fluid (CSF) Aβ1-42 (Aβ42) is an early indicator of preclinical Alzheimer disease (AD). To better understand their relationship during the earliest preclinical stages, we investigated baseline CSF markers in cognitively normal individuals at different stages of amyloid deposition defined by longitudinal amyloid imaging with Pittsburgh compound B (PIB): (1) PIB-negative at baseline and follow-up (PIB(-) ; normal), (2) PIB-negative at baseline but PIB-positive at follow-up (PIB converters; early preclinical AD), and (3) PIB-positive at baseline and follow-up (PIB(+) ; preclinical AD).
Methods: Cognitively normal individuals (n = 164) who had undergone baseline PIB scan and CSF collection within 1 year of each other and at least 1 additional PIB follow-up were included.
The common apolipoprotein E alleles (ε4, ε3, and ε2) are important genetic risk factors for late-onset Alzheimer's disease, with the ε4 allele increasing risk and reducing the age of onset and the ε2 allele decreasing risk and markedly delaying the age of onset. Preclinical and clinical studies have shown that apolipoprotein E (APOE) genotype also predicts the timing and amount of brain amyloid-β (Aβ) peptide deposition and amyloid burden (ε4 >ε3 >ε2). Using several administration protocols, we now report that direct intracerebral adeno-associated virus (AAV)-mediated delivery of APOE2 markedly reduces brain soluble (including oligomeric) and insoluble Aβ levels as well as amyloid burden in 2 mouse models of brain amyloidosis whose pathology is dependent on either the expression of murine Apoe or more importantly on human APOE4.
View Article and Find Full Text PDFThe National Institute of Aging and Alzheimer's Association (NIA-AA) criteria for Alzheimer disease (AD) treat neuroimaging and cerebrospinal fluid (CSF) markers of AD pathology as if they would be interchangeable. We tested this assumption in 212 cognitively normal participants who have both neuroimaging and CSF measures of β-amyloid (CSF Aβ1-42 and positron emission tomography imaging with Pittsburgh Compound B) and neuronal injury (CSF t-tau and p-tau and structural magnetic resonance imaging) with longitudinal clinical follow-up. Participants were classified in preclinical AD stage 1 (β-amyloidosis) or preclinical AD stage 2+ (β-amyloidosis and neuronal injury) using the NIA-AA criteria, or in the normal or suspected non-Alzheimer disease pathophysiology group (neuronal injury without β-amyloidosis).
View Article and Find Full Text PDFIntroduction: We conducted a phase Ib proof of mechanism trial to determine whether bexarotene (Targretin) increases central nervous system (CNS) apolipoprotein E (apoE) levels and alters Aβ metabolism in normal healthy individuals with the ε3/ε3 genotype.
Methods: We used stable isotope labeling kinetics (SILK-ApoE and SILK-Aβ) to measure the effect of bexarotene on the turnover rate of apoE and Aβ peptides and stable isotope spike absolute quantitation (SISAQ) to quantitate their concentrations in the cerebrospinal fluid (CSF). Normal subjects were treated for 3 days with bexarotene (n = 3 women, 3 men, average 32 years old) or placebo (n = 6 women, average 30.
The two primary molecular pathologies in Alzheimer's disease are amyloid-β plaques and tau-immunoreactive neurofibrillary tangles. Investigations into these pathologies have been restricted to cerebrospinal fluid assays, and positron emission tomography tracers that can image amyloid-β plaques. Tau tracers have recently been introduced into the field, although the utility of the tracer and its relationship to other Alzheimer biomarkers are still unknown.
View Article and Find Full Text PDFAn accurate home sleep study to assess electroencephalography (EEG)-based sleep stages and EEG power would be advantageous for both clinical and research purposes, such as for longitudinal studies measuring changes in sleep stages over time. The purpose of this study was to compare sleep scoring of a single-channel EEG recorded simultaneously on the forehead against attended polysomnography. Participants were recruited from both a clinical sleep centre and a longitudinal research study investigating cognitively normal ageing and Alzheimer's disease.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by two molecular pathologies: cerebral β-amyloidosis in the form of β-amyloid (Aβ) plaques and tauopathy in the form of neurofibrillary tangles, neuritic plaques, and neuropil threads. Until recently, only Aβ could be studied in humans using positron emission tomography (PET) imaging owing to a lack of tau PET imaging agents. Clinical pathological studies have linked tau pathology closely to the onset and progression of cognitive symptoms in patients with AD.
View Article and Find Full Text PDFWe hypothesized that one mechanism underlying the association between obstructive sleep apnea (OSA) and Alzheimer's disease is OSA leading to decreased slow wave activity (SWA), increased synaptic activity, decreased glymphatic clearance, and increased amyloid-β. Polysomnography and lumbar puncture were performed in OSA and control groups. SWA negatively correlated with cerebrospinal fluid (CSF) amyloid-β-40 among controls and was decreased in the OSA group.
View Article and Find Full Text PDFPostmortem brain studies of older drivers killed in car accidents indicate that many had Alzheimer disease (AD) neuropathologic changes. We examined whether AD biomarkers are related to driving performance among cognitively normal older adults. Individuals with normal cognition, aged 65+ years, and driving at least once per week, were recruited.
View Article and Find Full Text PDFBackground: The influence of reserve variables and Alzheimer's disease (AD) biomarkers on cognitive test performance has been fairly well-characterized. However, less is known about the influence of these factors on "non-cognitive" outcomes, including functional abilities and mood.
Objective: We examined whether cognitive and brain reserve variables mediate how AD biomarker levels in cognitively normal persons predict future changes in function, mood, and neuropsychiatric behavior.
Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial receptor that recognizes changes in the lipid microenvironment, which may occur during amyloid β (Aβ) accumulation and neuronal degeneration in Alzheimer's disease (AD). Rare TREM2 variants that affect TREM2 function lead to an increased risk of developing AD. In murine models of AD, TREM2 deficiency prevents microglial clustering around Aβ deposits.
View Article and Find Full Text PDFAccumulation of amyloid-β (Aβ) peptide in the brain is the first critical step in the pathogenesis of Alzheimer's disease (AD). Studies in humans suggest that Aβ clearance from the brain is frequently impaired in late-onset AD. Aβ accumulation leads to the formation of Aβ aggregates, which injure synapses and contribute to eventual neurodegeneration.
View Article and Find Full Text PDFImportance: Synaptic loss is an early pathologic substrate of Alzheimer disease (AD). Neurogranin is a postsynaptic neuronal protein that has demonstrated utility as a cerebrospinal fluid (CSF) marker of synaptic loss in AD.
Objective: To investigate the diagnostic and prognostic utility of CSF neurogranin levels in a large, well-characterized cohort of individuals with symptomatic AD and cognitively normal controls.
Objective: White matter hyperintensities (WMHs) are areas of increased signal on T2-weighted magnetic resonance imaging (MRI) scans that most commonly reflect small vessel cerebrovascular disease. Increased WMH volume is associated with risk and progression of Alzheimer's disease (AD). These observations are typically interpreted as evidence that vascular abnormalities play an additive, independent role contributing to symptom presentation, but not core features of AD.
View Article and Find Full Text PDFDuring the past decade, a conceptual shift occurred in the field of Alzheimer's disease (AD) considering the disease as a continuum. Thanks to evolving biomarker research and substantial discoveries, it is now possible to identify the disease even at the preclinical stage before the occurrence of the first clinical symptoms. This preclinical stage of AD has become a major research focus as the field postulates that early intervention may offer the best chance of therapeutic success.
View Article and Find Full Text PDFBiomarkers for Alzheimer's disease (AD) have improved our understanding of the temporal sequence of biological events that lead to AD dementia (Jack , 2013). AD is characterized neuropathologically by amyloid plaques comprised of the amyloid‐β peptide and neurofibrillary tangles comprised of tau. Brain amyloid deposition, as evidenced by a decline in amyloid‐β peptide 42 (Aβ42) in the cerebrospinal fluid (CSF) or by binding of amyloid PET ligands, is thought to be a key initiating event in AD and begins many years prior to the onset of dementia.
View Article and Find Full Text PDFBackground: In Alzheimer's disease, beta-amyloid peptides in the brain aggregate into toxic oligomers and plaques, a process which is associated with neuronal degeneration, memory loss, and cognitive decline. One therapeutic strategy is to decrease the production of potentially toxic beta-amyloid species by the use of inhibitors or modulators of the enzymes that produce beta-amyloid from amyloid precursor protein (APP). The failures of several such drug candidates by lack of effect or undesired side-effects underscore the importance to monitor the drug effects in the brain on a molecular level.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most prevalent form of dementia in elderly. Genetic studies revealed allelic segregation of the apolipoprotein E (ApoE) gene in sporadic AD and in families with higher risk of AD. The mechanisms underlying the pathological effects of ApoE4 are not yet entirely clear.
View Article and Find Full Text PDFUnlabelled: Aerobic glycolysis and lactate production in the brain plays a key role in memory, yet the role of this metabolism in the cognitive decline associated with Alzheimer's disease (AD) remains poorly understood. Here we examined the relationship between cerebral lactate levels and memory performance in an APP/PS1 mouse model of AD, which progressively accumulates amyloid-β. In vivo (1)H-magnetic resonance spectroscopy revealed an age-dependent decline in lactate levels within the frontal cortex of control mice, whereas lactate levels remained unaltered in APP/PS1 mice from 3 to 12 months of age.
View Article and Find Full Text PDFAlzheimer's disease (AD), the most common cause of dementia in the elderly, is a complex neurodegenerative disease marked by the appearance of amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles. Alzheimer's disease has a strong genetic component, and recent advances in genome technology have unearthed novel variants in several genes, which could provide insight into the pathogenic mechanisms that contribute to AD. Particularly interesting are variants in the microglial-expressed receptor TREM2 which are associated with a 2-4-fold increased risk of developing AD.
View Article and Find Full Text PDFLow frequency coding variants in TREM2 are associated with increased Alzheimer disease (AD) risk, while loss of functions mutations in the gene lead to an autosomal recessive early-onset dementia, named Nasu-Hakola disease (NHD). TREM2 can be detected as a soluble protein in cerebrospinal fluid (CSF) and plasma, and its CSF levels are elevated in inflammatory CNS diseases. We measured soluble TREM2 (sTREM2) in the CSF of a large AD case-control dataset (n = 180) and 40 TREM2 risk variant carriers to determine whether CSF sTREM2 levels are associated with AD status or mutation status.
View Article and Find Full Text PDFIntroduction: The dynamic range of cerebrospinal fluid (CSF) amyloid β (Aβ) measurement does not parallel to cognitive changes in Alzheimer's disease (AD) and cognitively normal (CN) subjects across different studies. Therefore, identifying novel proteins to characterize symptomatic AD samples is important.
Methods: Proteins were profiled using a multianalyte platform by Rules Based Medicine (MAP-RBM).
Physical activity has long been hypothesized to influence the risk and pathology of Alzheimer's disease. However, the amount of physical activity necessary for these benefits is unclear. We examined the effects of three months of low and high intensity exercise training on soluble Aβ40 and Aβ42 levels in extracellular enriched fractions from the cortex and hippocampus of young Tg2576 mice.
View Article and Find Full Text PDFIntroduction: Amyloid β (Aβ) accumulates in the extracellular space as diffuse and neuritic plaques in Alzheimer's disease (AD). Aβ also deposits on the walls of arterioles as cerebral amyloid angiopathy (CAA) in most cases of AD and sometimes independently of AD. Apolipoprotein E (apoE) ɛ4 is associated with increases in both Aβ plaques and CAA in humans.
View Article and Find Full Text PDF