Previous studies have shown that natural heteromolecular complexes might be an alternative to synthetic chelates to correct iron (Fe) deficiency. To investigate the mechanism of action of these complexes, we have studied their interaction with Ca at alkaline pH, Fe-binding stability, Fe-root uptake in cucumber, and chemical structure using molecular modeling. The results show that a heteromolecular Fe complex including citric acid and lignosulfonate as binding ligands (Ls-Cit) forms a supramolecular system in solution with iron citrate interacting with the hydrophobic inner core of the lignosulfonate system.
View Article and Find Full Text PDFMany studies have shown the capacity of soil humic substances (HS) to improve plant growth in natural ecosystems. This effect involves the activation of different processes within the plant at different coordinated molecular, biochemical, and physiological levels. However, the first event triggered by plant root-HS interaction remains unclear.
View Article and Find Full Text PDFThe global decrease in soil fertility leads to a new agricultural scenario where eco-friendly solutions play an important role. The plant growth promotion through the use of microbes, especially endophytes and rhizosphere microbiota, has been proposed as a useful solution. Several studies have shown that humic substances are suitable vehicles for the inoculation of plant growth promoting bacteria, and that this combination has an enhanced effect on the stimulation of plant development.
View Article and Find Full Text PDFHumic substances (HS, fulvic and humic acids) are widely used as fertilizers or plant growth stimulants, although their mechanism of action still remains partially unknown. Humic substances may be applied either directly to the soil or as foliar sprays. Despite both kind of application are commonly used in agricultural practices, most of the studies regarding the elicited response in plants induced by HS are based on the root-application of these substances.
View Article and Find Full Text PDF