The second messenger cyclic dimeric GMP (c-di-GMP) plays a central role in controlling decision-making processes that are vitally important for the environmental survival of the human pathogen Vibrio parahaemolyticus. The mechanisms by which c-di-GMP levels and biofilm formation are dynamically controlled in V. parahaemolyticus are poorly understood.
View Article and Find Full Text PDFAzospirillum baldaniorum Sp245, a plant growth-promoting rhizobacterium, can form biofilms through a process controlled by the second messenger cyclic diguanylate monophosphate (c-di-GMP). A. baldaniorum has a variety of proteins potentially involved in controlling the turnover of c-di-GMP many of which are coupled to sensory domains that could be involved in establishing a mutualistic relationship with the host.
View Article and Find Full Text PDFis a plant growth-promoting rhizobacterium (PGPR) capable of fixing nitrogen, the synthesis of several phytohormones including indole-acetic acid, and induction of plant defenses against phytopathogens. To establish a successful and prolonged bacteria-plant interaction, can form biofilms, bacterial communities embedded in a self-made matrix formed by extracellular polymeric substances which provide favorable conditions for survival. A key modulator of biofilm formation is the second messenger bis-(3'-5')-cyclic-dimeric-GMP (c-di-GMP), which is synthesized by diguanylate cyclases (DGC) and degraded by specific phosphodiesterases.
View Article and Find Full Text PDFVibrio parahaemolyticus cells transit from free-swimming to surface adapted lifestyles, such as swarming colonies and three-dimensional biofilms. These transitions are regulated by sensory modules and regulatory networks that involve the second messenger cyclic diguanylate monophosphate (c-di-GMP). In this work, we show that a previously uncharacterized c-di-GMP phosphodiesterase (VP1881) from V.
View Article and Find Full Text PDFOmpR, is one of the best characterized response regulators families, which includes transcriptional regulators with a variety of physiological roles including the control of symbiotic nitrogen fixation (SNF). The CE3 genome encodes 18 OmpR-type regulators; the function of the majority of these regulators during the SNF in common bean, remains elusive. In this work, we demonstrated that a mutant strain lacking the OmpR-type regulator RetPC57 (ΔRetPC57), formed less nodules when used as inoculum for common bean.
View Article and Find Full Text PDFThe genus belonging to the family, is characterized by the formation of cysts, which are metabolically dormant cells produced under adverse conditions and able to resist desiccation. Although this developmental process has served as a model for the study of cell differentiation in Gram-negative bacteria, the molecular basis of its regulation is still poorly understood. Here, we report that the ubiquitous second messenger cyclic dimeric GMP (c-di-GMP) is critical for the formation of cysts in Upon encystment induction, the levels of c-di-GMP increased, reaching a peak within the first 6 h.
View Article and Find Full Text PDFproduces the linear exopolysaccharide alginate, a compound of significant biotechnological importance. The biosynthesis of alginate in and has several similarities but is regulated somewhat differently in the two microbes. Here, we show that the second messenger cyclic dimeric GMP (c-di-GMP) regulates the production and the molecular mass of alginate in The hybrid protein MucG, containing conserved GGDEF and EAL domains and N-terminal HAMP and PAS domains, behaved as a c-di-GMP phosphodiesterase (PDE).
View Article and Find Full Text PDFThe assembly status of the V. cholerae flagellum regulates biofilm formation, suggesting that the bacterium senses a lack of movement to commit to a sessile lifestyle. Motility and biofilm formation are inversely regulated by the second messenger molecule cyclic dimeric guanosine monophosphate (c-di-GMP).
View Article and Find Full Text PDFbiofilm formation and associated motility suppression are correlated with increased concentrations of cyclic diguanylate monophosphate (c-di-GMP), which are in turn driven by increased levels and/or activity of diguanylate cyclases (DGCs). To further our understanding of how c-di-GMP modulators in individually and collectively influence motility with cellular resolution, we determined how DGCs CdgD and CdgH impact intracellular c-di-GMP levels, motility, and biofilm formation. Our results indicated that CdgH strongly influences swim speed distributions; cells in which was deleted had higher average swim speeds than wild-type cells.
View Article and Find Full Text PDFThe biofilm growth mode is important in both the intestinal and environmental phases of the life cycle. Regulation of biofilm formation involves several transcriptional regulators and alternative sigma factors. One such factor is the alternative sigma factor RpoN, which positively regulates biofilm formation.
View Article and Find Full Text PDFAlthough Gram-negative bacterial pathogens continue to impart a substantial burden on global healthcare systems, much remains to be understood about aspects of basic physiology in these organisms. In recent years, cyclic-diguanylate (c-di-GMP) has emerged as a key regulator of a number of important processes related to pathogenicity, including biofilm formation, motility and virulence. In an effort to discover chemical genetic probes for studying we have developed a new motility-based high-throughput screen to identify compounds that modulate c-di-GMP levels.
View Article and Find Full Text PDFThe second messenger nucleotide cyclic dimeric guanosine monophosphate (c-di-GMP) governs many cellular processes in the facultative human pathogen Vibrio cholerae. This organism copes with changing environmental conditions in aquatic environments and during transitions to and from human hosts. Modulation of c-di-GMP allows V.
View Article and Find Full Text PDFC-di-GMP is a bacterial second messenger regulating various cellular functions. Many bacteria contain c-di-GMP-metabolizing enzymes but lack known c-di-GMP receptors. Recently, two MshE-type ATPases associated with bacterial type II secretion system and type IV pilus formation were shown to specifically bind c-di-GMP.
View Article and Find Full Text PDFIn Sinorhizobium meliloti, nitrogen fixation is regulated in response to oxygen concentration through the FixL-FixJ two-component system (TCS). Besides this conserved TCS, the field isolate SM11 also encodes the hFixL-FxkR TCS, which is responsible for the microoxic response in Rhizobium etli. Through genetic and physiological assays, we evaluated the role of the hFixL-FxkR TCS in S.
View Article and Find Full Text PDFIn many bacteria, including Vibrio cholerae, cyclic dimeric guanosine monophosphate (c-di-GMP) controls the motile to biofilm life style switch. Yet, little is known about how this occurs. In this study, we report that changes in c-di-GMP concentration impact the biosynthesis of the MshA pili, resulting in altered motility and biofilm phenotypes in V.
View Article and Find Full Text PDFNearly all bacteria form biofilms as a strategy for survival and persistence. Biofilms are associated with biotic and abiotic surfaces and are composed of aggregates of cells that are encased by a self-produced or acquired extracellular matrix. Vibrio cholerae has been studied as a model organism for understanding biofilm formation in environmental pathogens, as it spends much of its life cycle outside of the human host in the aquatic environment.
View Article and Find Full Text PDFUnlabelled: The ability to form biofilms is critical for environmental survival and transmission of Vibrio cholerae, a facultative human pathogen responsible for the disease cholera. Biofilm formation is controlled by several transcriptional regulators and alternative sigma factors. In this study, we report that the two main positive regulators of biofilm formation, VpsR and VpsT, bind to nonoverlapping target sequences in the regulatory region of vpsL in vitro.
View Article and Find Full Text PDFTwo-component systems play important roles in the physiology of many bacterial pathogens. Vibrio cholerae's CarRS two-component regulatory system negatively regulates expression of vps (Vibrio polysaccharide) genes and biofilm formation. In this study, we report that CarR confers polymyxin B resistance by positively regulating expression of the almEFG genes, whose products are required for glycine and diglycine modification of lipid A.
View Article and Find Full Text PDFSeveral environmental stresses generate high amounts of reactive oxygen species (ROS) in plant cells, resulting in oxidative stress. Symbiotic nitrogen fixation (SNF) in the legume-rhizobia symbiosis is sensitive to damage from oxidative stress. Active nodules of the common bean (Phaseolus vulgaris) exposed to the herbicide paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride hydrate), which stimulates ROS accumulation, exhibited reduced nitrogenase activity and ureide content.
View Article and Find Full Text PDFTranscriptional control of the fixK gene in Rhizobium etli and R. leguminosarum bv. viciae is governed by a two-component signal transduction system that diverts from the conventional FixL-FixJ cascade that occurs in model rhizobia.
View Article and Find Full Text PDFMicrobial flavohaemoglobins are proteins with homology to haemoglobins from higher organisms, but clearly linked to nitric oxide (NO) metabolism by bacteria and yeast. hmp mutant strains of several bacteria are hypersensitive to NO and related compounds and hmp genes are up-regulated by the presence of NO. The regulatory mechanisms involved in hmp induction by NO and the superoxide-generating agent, methyl viologen (paraquat; PQ), are complex, but progressively being resolved.
View Article and Find Full Text PDF