Although critical for tuning the timing and level of transcription, enhancer communication with distal promoters is not well understood. Here, we bypass the need for sequence-specific transcription factors (TFs) and recruit activators directly using a chimeric array of gRNA oligos to target dCas9 fused to the activator VP64-p65-Rta (CARGO-VPR). We show that this approach achieves effective activator recruitment to arbitrary genomic sites, even those inaccessible when targeted with a single guide.
View Article and Find Full Text PDFTranscriptional effectors are protein domains known to activate or repress gene expression; however, a systematic understanding of which effector domains regulate transcription across genomic, cell type and DNA-binding domain (DBD) contexts is lacking. Here we develop dCas9-mediated high-throughput recruitment (HT-recruit), a pooled screening method for quantifying effector function at endogenous target genes and test effector function for a library containing 5,092 nuclear protein Pfam domains across varied contexts. We also map context dependencies of effectors drawn from unannotated protein regions using a larger library tiling chromatin regulators and transcription factors.
View Article and Find Full Text PDF, the most frequently mutated gene in human cancer, encodes a transcriptional activator that induces myriad downstream target genes. Despite the importance of p53 in tumor suppression, the specific p53 target genes important for tumor suppression remain unclear. Recent studies have identified the p53-inducible gene as a critical effector of tumor suppression, but many questions remain regarding its p53-dependence, activity across contexts, and mechanism of tumor suppression alone and in cooperation with other p53-inducible genes.
View Article and Find Full Text PDFThere is a need to investigate novel strategies in order to create an effective, broadly protective vaccine for current and future severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks. The currently available vaccines demonstrate compromised efficacy against emerging SARS-CoV-2 variants of concern (VOCs), short-lived immunity, and susceptibility to immune imprinting due to frequent boosting practices. In this study, we examined the specificity of cross-reactive IgG antibody responses in mRNA-vaccinated, AstraZeneca-vaccinated, and unvaccinated donors to identify potentially conserved, cross-reactive epitopes to target in order to create a broadly protective SARS-CoV-2 vaccine.
View Article and Find Full Text PDFWhile critical for tuning the timing and level of transcription, enhancer communication with distal promoters is not well understood. Here we bypass the need for sequence-specific transcription factors and recruit activators directly using CARGO-VPR, an approach for targeting dCas9-VPR using a multiplexed array of RNA guides. We show that this approach achieves effective activator recruitment to arbitrary genomic sites, even those inaccessible by single dCas9.
View Article and Find Full Text PDFThe ENCODE Consortium's efforts to annotate noncoding cis-regulatory elements (CREs) have advanced our understanding of gene regulatory landscapes. Pooled, noncoding CRISPR screens offer a systematic approach to investigate cis-regulatory mechanisms. The ENCODE4 Functional Characterization Centers conducted 108 screens in human cell lines, comprising >540,000 perturbations across 24.
View Article and Find Full Text PDFThe assembly of cortical circuits involves the generation and migration of interneurons from the ventral to the dorsal forebrain, which has been challenging to study at inaccessible stages of late gestation and early postnatal human development. Autism spectrum disorder and other neurodevelopmental disorders (NDDs) have been associated with abnormal cortical interneuron development, but which of these NDD genes affect interneuron generation and migration, and how they mediate these effects remains unknown. We previously developed a platform to study interneuron development and migration in subpallial organoids and forebrain assembloids.
View Article and Find Full Text PDFSelectively ablating damaged cells is an evolving therapeutic approach for age-related disease. Current methods for genome-wide screens to identify genes whose deletion might promote the death of damaged or senescent cells are generally underpowered because of the short timescales of cell death as well as the difficulty of scaling non-dividing cells. Here, we establish "Death-seq," a positive-selection CRISPR screen optimized to identify enhancers and mechanisms of cell death.
View Article and Find Full Text PDFPurpose: In the phase II ELOQUENT-3 trial (ClinicalTrials.gov identifier: NCT02654132), elotuzumab combined with pomalidomide/dexamethasone (EPd) significantly improved progression-free survival (PFS) versus pomalidomide/dexamethasone (Pd) in patients with relapsed/refractory multiple myeloma (RRMM) previously treated with lenalidomide and a proteasome inhibitor (PI). Here, we present the final overall survival (OS) results.
View Article and Find Full Text PDFMonoclonal antibody therapies targeting tumour antigens drive cancer cell elimination in large part by triggering macrophage phagocytosis of cancer cells. However, cancer cells evade phagocytosis using mechanisms that are incompletely understood. Here we develop a platform for unbiased identification of factors that impede antibody-dependent cellular phagocytosis (ADCP) using complementary genome-wide CRISPR knockout and overexpression screens in both cancer cells and macrophages.
View Article and Find Full Text PDFThe trafficking of specific protein cohorts to correct subcellular locations at correct times is essential for every signaling and regulatory process in biology. Gene perturbation screens could provide a powerful approach to probe the molecular mechanisms of protein trafficking, but only if protein localization or mislocalization can be tied to a simple and robust phenotype for cell selection, such as cell proliferation or fluorescence-activated cell sorting (FACS). To empower the study of protein trafficking processes with gene perturbation, we developed a genetically encoded molecular tool named HiLITR (High-throughput Localization Indicator with Transcriptional Readout).
View Article and Find Full Text PDFObjectives: The objectives of this study were (1) to develop and validate a simulation model to estimate daily probabilities of healthcare-associated infections (HAIs), length of stay (LOS), and mortality using time varying patient- and unit-level factors including staffing adequacy and (2) to examine whether HAI incidence varies with staffing adequacy.
Setting: The study was conducted at 2 tertiary- and quaternary-care hospitals, a pediatric acute care hospital, and a community hospital within a single New York City healthcare network.
Patients: All patients discharged from 2012 through 2016 (N = 562,435).
Background: Accurate, real-time models to predict hospital adverse events could facilitate timely and targeted interventions to improve patient outcomes. Advances in computing enable the use of supervised machine learning (SML) techniques to predict hospital-onset infections.
Objectives: The purpose of this study was to trial SML methods to predict urinary tract infections (UTIs) during inpatient hospitalization at the time of admission.
Cancer genomics studies have identified thousands of putative cancer driver genes. Development of high-throughput and accurate models to define the functions of these genes is a major challenge. Here we devised a scalable cancer-spheroid model and performed genome-wide CRISPR screens in 2D monolayers and 3D lung-cancer spheroids.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
September 2020
Accurate prediction of a patient's length-of-stay (LOS) in the hospital enables an efficient and effective management of hospital beds. This paper studies LOS prediction for pediatric patients with respiratory diseases using three decision tree methods: Bagging, Adaboost, and Random forest. A data set of 11,206 records retrieved from the hospital information system is used for analysis after preprocessing and transformation through a computation and an expansion method.
View Article and Find Full Text PDFThe small molecule Retro-2 prevents ricin toxicity through a poorly-defined mechanism of action (MOA), which involves halting retrograde vesicle transport to the endoplasmic reticulum (ER). CRISPRi genetic interaction analysis revealed Retro-2 activity resembles disruption of the transmembrane domain recognition complex (TRC) pathway, which mediates post-translational ER-targeting and insertion of tail-anchored (TA) proteins, including SNAREs required for retrograde transport. Cell-based and in vitro assays show that Retro-2 blocks delivery of newly-synthesized TA-proteins to the ER-targeting factor ASNA1 (TRC40).
View Article and Find Full Text PDFPooled CRISPR-Cas9 screens are a powerful method for functionally characterizing regulatory elements in the non-coding genome, but off-target effects in these experiments have not been systematically evaluated. Here, we investigate Cas9, dCas9, and CRISPRi/a off-target activity in screens for essential regulatory elements. The sgRNAs with the largest effects in genome-scale screens for essential CTCF loop anchors in K562 cells were not single guide RNAs (sgRNAs) that disrupted gene expression near the on-target CTCF anchor.
View Article and Find Full Text PDFMutations that lead to splicing defects can have severe consequences on gene function and cause disease. Here, we explore how human genetic variation affects exon recognition by developing a multiplexed functional assay of splicing using Sort-seq (MFASS). We assayed 27,733 variants in the Exome Aggregation Consortium (ExAC) within or adjacent to 2,198 human exons in the MFASS minigene reporter and found that 3.
View Article and Find Full Text PDFThe past several years have seen an explosion in development of applications for the CRISPR-Cas9 system, from efficient genome editing, to high-throughput screening, to recruitment of a range of DNA and chromatin-modifying enzymes. While homology-directed repair (HDR) coupled with Cas9 nuclease cleavage has been used with great success to repair and re-write genomes, recently developed base-editing systems present a useful orthogonal strategy to engineer nucleotide substitutions. Base editing relies on recruitment of cytidine deaminases to introduce changes (rather than double-stranded breaks and donor templates) and offers potential improvements in efficiency while limiting damage and simplifying the delivery of editing machinery.
View Article and Find Full Text PDFComput Inform Nurs
December 2017
Although previous research has confirmed that nurse staffing affects patient outcomes, some potentially important factors have not been accounted for in tools to assess relationships between staffing and outcomes. The aim of this project was to develop and test a Nursing Intensity of Care Index using electronically available data from 152 072 patient discharges from three hospitals. Initially, 1765 procedure codes were reviewed; 69 were confirmed as directly increasing nursing workload by at least 15 minutes per shift.
View Article and Find Full Text PDFAsian J Androl
January 2017
While we may be comfortable with an allopathic approach to male infertility, we are also responsible for knowledge about lifestyle modifications and holistic, complementary, and alternative therapies that are used by many of our patients. This paper provides an evidence-based review separating fact from fiction for several of these therapies. There is sufficient literature to support weight reduction by diet and exercise, smoking cessation, and alcohol moderation.
View Article and Find Full Text PDFRev Bras Hematol Hemoter
July 2014