Publications by authors named "David Yanni"

The prevalence of multicellular organisms is due in part to their ability to form complex structures. How cells pack in these structures is a fundamental biophysical issue, underlying their functional properties. However, much remains unknown about how cell packing geometries arise, and how they are affected by random noise during growth - especially absent developmental programs.

View Article and Find Full Text PDF

Reproductive division of labor (e.g. germ-soma specialization) is a hallmark of the evolution of multicellularity, signifying the emergence of a new type of individual and facilitating the evolution of increased organismal complexity.

View Article and Find Full Text PDF

The integration of automotive technology with internet connectivity promises to both dramatically improve transportation while simultaneously introducing the potential for new unknown risks. Internet-connected vehicles are like digital data because they can be targeted for malicious hacking. Unlike digital data, however, internet-connected vehicles are cyberphysical systems that physically interact with each other and their environment.

View Article and Find Full Text PDF

Microbes are social organisms, interacting primarily through secreted biomolecules. Many traits have evolved based solely on their effects upon other community members, yet even individually beneficial traits often create social side effects that are mediated by spatial population structure. Predicting the evolution of many microbial traits thus requires a comprehensive understanding of their social consequences.

View Article and Find Full Text PDF

Unlike equilibrium atomic solids, biofilms-soft solids composed of bacterial cells-do not experience significant thermal fluctuations at the constituent level. However, living cells stochastically reproduce and die, provoking a mechanical response. We investigate the mechanical consequences of cellular death and reproduction by measuring surface-height fluctuations of biofilms containing two mutually antagonistic strains of Vibrio cholerae that kill one another on contact via the type VI secretion system.

View Article and Find Full Text PDF