Publications by authors named "David Y Pereira"

Low yields of extracted cell-free DNA (cfDNA) from plasma limit continued development of liquid biopsy in cancer, especially in early-stage cancer diagnostics and cancer screening applications. We investigate a novel liquid-phase-based DNA isolation method that utilizes aqueous two-phase systems to purify and concentrate circulating cfDNA. The PHASIFY MAX and PHASIFY ENRICH kits were compared to a commonly employed solid-phase extraction method on their ability to extract cfDNA from a set of 91 frozen plasma samples from cancer patients.

View Article and Find Full Text PDF

As the COVID-19 pandemic progresses, there is an increasing need for rapid, accessible assays for SARS-CoV-2 detection. We present a clinical evaluation and real-world implementation of the INDICAID COVID-19 rapid antigen test (INDICAID rapid test). A multisite clinical evaluation of the INDICAID rapid test using prospectively collected nasal (bilateral anterior) swab samples from symptomatic subjects was performed.

View Article and Find Full Text PDF

In previous work, our group discovered a phenomenon in which a mixed polymer-salt or mixed micellar aqueous two-phase system (ATPS) separates into its two constituent phases as it flows within paper. While these ATPSs worked well in their respective studies to concentrate the target biomarker and improve the sensitivity of the lateral-flow immunoassay, different ATPSs can be advantageous for new applications based on factors such as biomarker partitioning or biochemical compatibility between ATPS and sample components. However, since the mechanism of phase separation in porous media is not completely understood, introducing other ATPSs to paper is an unpredictable process that relies on trial and error experiments.

View Article and Find Full Text PDF

The lateral-flow immunoassay (LFA) is an inexpensive and rapid paper-based assay that can potentially detect infectious disease biomarkers in resource-poor settings. Despite its many advantages that make it suitable for point-of-care diagnosis, LFA is limited by its inferior sensitivity relative to sophisticated laboratory-based assays. Our group previously introduced the use of a micellar aqueous two-phase system (ATPS), comprised of the nonionic Triton X-114 surfactant, to concentrate biomarkers in a sample and enhance their detection with LFA.

View Article and Find Full Text PDF

Significant advances in the encapsulation and release of drugs from degradable polymers have led to the Food and Drug Administration approval of Gliadel wafers for controlled local delivery of the chemotherapeutic drug carmustine to high-grade gliomas following surgical resection. Due to the localized nature of the delivery method, no pharmacokinetic measurements have been taken in humans. Rather, pharmacokinetic studies in animals and associated modeling have indicated the capability of carmustine to be delivered in high concentrations within millimeters from the implant site over approximately 5 days.

View Article and Find Full Text PDF