Biochem Biophys Res Commun
February 2023
Matrin 3 is a nuclear matrix protein that has many roles in RNA processing including splicing and transport of mRNA. Many missense mutations in the Matrin 3 gene (MATR3) have been linked to familial forms of amyotrophic lateral sclerosis (ALS) and distal myopathy. However, the exact role of MATR3 mutations in ALS and myopathy pathogenesis is not understood.
View Article and Find Full Text PDFT relaxivity contrast imaging may serve as a potential imaging biomarker for amyotrophic lateral sclerosis (ALS) by noninvasively quantifying the tissue microstructure. In this preliminary longitudinal study, we investigated the Transverse Relaxivity at Tracer Equilibrium (TRATE) in three muscle groups between SOD1-G93A (ALS model) rat and a control population at two different timepoints. The control group was time matched to the ALS group such that the second timepoint was the onset of disease.
View Article and Find Full Text PDFFibroblasts from an amyotrophic lateral sclerosis patient with simultaneous mutations in the MATR3 gene and KIF5A gene were isolated and reprogrammed into induced pluripotent stem cells via a non-integrating Sendai viral vector. The generated iPSC clones demonstrated normal karyotype, expression of pluripotency markers, and the capacity to differentiate into three germ layers. The unique presence of two simultaneous mutations in ALS-associated genes represent a novel tool for the study of ALS disease mechanisms.
View Article and Find Full Text PDFDysregulation of the retinoic acid (RA) signaling pathway is observed in amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Here, we investigated the therapeutic potential of retinoid activation via the RA receptor β (RARβ) in the SOD1 mouse model of ALS. Our approach utilized the RARβ agonist adapalene, which we previously found to be neuroprotective Adapalene, like most retinoids, is poorly water soluble, which has thus far prevented effective drug delivery .
View Article and Find Full Text PDFUnderstanding of the mechanisms by which systemically administered nanoparticles achieve delivery across biological barriers remains incomplete, due in part to the challenge of tracking nanoparticle fate in the body. Here, we develop a new approach for "barcoding" nanoparticles composed of poly(lactic-co-glycolic acid) (PLGA) with bright, spectrally defined quantum dots (QDs) to enable direct, fluorescent detection of nanoparticle fate with subcellular resolution. We show that QD labeling does not affect major biophysical properties of nanoparticles or their interaction with cells and tissues.
View Article and Find Full Text PDFAccumulation of the transactive response DNA-binding protein 43 (TDP-43) is a major hallmark of several neurodegenerative disorders, collectively known as TDP-43 proteinopathies. The most common TDP-43 proteinopathies, frontotemporal lobar degeneration with TDP-43-positive inclusions, and amyotrophic lateral sclerosis, share overlapping neuropathological and clinical phenotypes. The development and detailed analysis of animal models of TDP-43 proteinopathies are critical for understanding the pathogenesis of these disorders.
View Article and Find Full Text PDFAmyloid beta (Aβ) is implicated in Alzheimer's disease (AD) as an integral component of both neural toxicity and plaque formation. Brains of the longest-lived rodents, naked mole-rats (NMRs) approximately 32 years of age, had levels of Aβ similar to those of the 3xTg-AD mouse model of AD. Interestingly, there was no evidence of extracellular plaques, nor was there an age-related increase in Aβ levels in the individuals examined (2-20+ years).
View Article and Find Full Text PDFAccumulation of tau is a critical event in several neurodegenerative disorders, collectively known as tauopathies, which include Alzheimer's disease and frontotemporal dementia. Pathological tau is hyperphosphorylated and aggregates to form neurofibrillary tangles. The molecular mechanisms leading to tau accumulation remain unclear and more needs to be done to elucidate them.
View Article and Find Full Text PDFThe accumulation of TDP-43 (transactive response DNA-binding protein 43) and its 25 kDa C-terminal fragment (TDP-25) is a hallmark of several neurodegenerative disorders, including frontotemporal lobar degeneration (FTLD-TDP) and amyotrophic lateral sclerosis (ALS). The majority of FTLD-TDP cases are due to loss of function mutations in the gene encoding progranulin, a secreted growth factor. In ALS, specific mutations in the gene encoding TDP-43 have been linked to the disease pathogenesis.
View Article and Find Full Text PDFUnderstanding the factors that contribute to age-related cognitive decline is imperative, particularly as age is the major risk factor for several neurodegenerative disorders. Levels of several cytokines increase in the brain during aging, including IL-1β, whose levels positively correlate with cognitive deficits. Previous reports show that reducing the activity of the mammalian target of rapamycin (mTOR) extends lifespan in yeast, nematodes, Drosophila, and mice.
View Article and Find Full Text PDFReducing the mammalian target of rapamycin (mTOR) activity increases lifespan and health span in a variety of organisms. Alterations in protein homeostasis and mTOR activity and signaling have been reported in several neurodegenerative disorders, including Alzheimer disease (AD); however, the causes of such deregulations remain elusive. Here, we show that mTOR activity and signaling are increased in cell lines stably transfected with mutant amyloid precursor protein (APP) and in brains of 3xTg-AD mice, an animal model of AD.
View Article and Find Full Text PDFPromising results have emerged from a phase II clinical trial testing methylene blue (MB) as a potential therapeutic for Alzheimer disease (AD), where improvements in cognitive functions of AD patients after 6 months of MB administration have been reported. Despite these reports, no preclinical testing of MB in mammals has been published, and thus its mechanism of action in relation to AD pathology remains unknown. In order to elucidate the effects of MB on AD pathology and to determine its mechanism of action, we used a mouse model (3xTg-AD) that develops age-dependent accumulation of Aβ and tau and cognitive decline.
View Article and Find Full Text PDF