Publications by authors named "David Wozny"

Anal mucinous adenocarcinoma arises from mucin-secreting columnar epithelium within anal glands and is extremely rare, comprising 2%-3% of all gastrointestinal malignancies. We present a unique case of 65-year-old developmentally disabled man with complaint of rectal pain. Examination showed an excoriated erythematous perianal region with mucinous film and subdermal nodularity.

View Article and Find Full Text PDF

() infection is very common and affects a significant proportion of the world population. In contrast, the prevalence of small intestinal bacterial overgrowth (SIBO) in the general population is not well understood. There can be coexistence of both disease states in a given patient and their clinical symptoms may also overlap with one and another.

View Article and Find Full Text PDF

Individuals vary in their tendency to bind signals from multiple senses. For the same set of sights and sounds, one individual may frequently integrate multisensory signals and experience a unified percept, whereas another individual may rarely bind them and often experience two distinct sensations. Thus, while this binding/integration tendency is specific to each individual, it is not clear how plastic this tendency is in adulthood, and how sensory experiences may cause it to change.

View Article and Find Full Text PDF

In our daily lives, our capacity to selectively attend to stimuli within or across sensory modalities enables enhanced perception of the surrounding world. While previous research on selective attention has studied this phenomenon extensively, two important questions still remain unanswered: (1) how selective attention to a single modality impacts sensory integration processes, and (2) the mechanism by which selective attention improves perception. We explored how selective attention impacts performance in both a spatial task and a temporal numerosity judgment task, and employed a Bayesian Causal Inference model to investigate the computational mechanism(s) impacted by selective attention.

View Article and Find Full Text PDF

Localization of objects and events in the environment is critical for survival, as many perceptual and motor tasks rely on estimation of spatial location. Therefore, it seems reasonable to assume that spatial localizations should generally be accurate. Curiously, some previous studies have reported biases in visual and auditory localizations, but these studies have used small sample sizes and the results have been mixed.

View Article and Find Full Text PDF

Examining the function of individual human hippocampal subfields remains challenging because of their small sizes and convoluted structures. Previous human fMRI studies at 3 T have successfully detected differences in activation between hippocampal cornu ammonis (CA) field CA1, combined CA2, CA3, and dentate gyrus (DG) region (CA23DG), and the subiculum during associative memory tasks. In this study, we investigated hippocampal subfield activity in healthy participants using an associative memory paradigm during high-resolution fMRI scanning at 7 T.

View Article and Find Full Text PDF

Listeners use lexical or visual context information to recalibrate auditory speech perception. After hearing an ambiguous auditory stimulus between /aba/ and /ada/ coupled with a clear visual stimulus (e.g.

View Article and Find Full Text PDF

Bimodal stimulation, or stimulation of a cochlear implant (CI) together with a contralateral hearing aid (HA), can improve speech perception in noise However, this benefit is variable, and some individuals even experience interference with bimodal stimulation. One contributing factor to this variability may be differences in binaural spectral integration (BSI) due to abnormal auditory experience. CI programming introduces interaural pitch mismatches, in which the frequencies allocated to the electrodes (and contralateral HA) differ from the electrically stimulated cochlear frequencies.

View Article and Find Full Text PDF

Recent research investigating the principles governing human perception has provided increasing evidence for probabilistic inference in human perception. For example, human auditory and visual localization judgments closely resemble that of a Bayesian causal inference observer, where the underlying causal structure of the stimuli are inferred based on both the available sensory evidence and prior knowledge. However, most previous studies have focused on characterization of perceptual inference within a static environment, and therefore, little is known about how this inference process changes when observers are exposed to a new environment.

View Article and Find Full Text PDF

Multisensory perception has been the focus of intense investigation in recent years. It is now well-established that crossmodal interactions are ubiquitous in perceptual processing and endow the system with improved precision, accuracy, processing speed, etc. While these findings have shed much light on principles and mechanisms of perception, ultimately it is not very surprising that multiple sources of information provides benefits in performance compared to a single source of information.

View Article and Find Full Text PDF

Basic features of objects and events in the environment such as timing and spatial location are encoded by multiple sensory modalities. This redundancy in sensory coding allows recalibration of one sense by other senses if there is a conflict between the sensory maps (Radeau and Bertelson, 1974; Zwiers et al., 2003; Navarra et al.

View Article and Find Full Text PDF

The question of which strategy is employed in human decision making has been studied extensively in the context of cognitive tasks; however, this question has not been investigated systematically in the context of perceptual tasks. The goal of this study was to gain insight into the decision-making strategy used by human observers in a low-level perceptual task. Data from more than 100 individuals who participated in an auditory-visual spatial localization task was evaluated to examine which of three plausible strategies could account for each observer's behavior the best.

View Article and Find Full Text PDF

Perceptual systems can be altered by immersing observers in environments with statistical properties that differ from those naturally encountered. Here we present a novel method for placing observers in naturalistic audio visual environments whose statistics can be manipulated in very targeted ways. We present the results of a case study that used this method.

View Article and Find Full Text PDF

Our nervous system typically processes signals from multiple sensory modalities at any given moment and is therefore posed with two important problems: which of the signals are caused by a common event, and how to combine those signals. We investigated human perception in the presence of auditory, visual, and tactile stimulation in a numerosity judgment task. Observers were presented with stimuli in one, two, or three modalities simultaneously and were asked to report their percepts in each modality.

View Article and Find Full Text PDF