Publications by authors named "David Wl Hukins"

This study evaluated the effect of pulsed low-intensity ultrasound on cell proliferation, collagen production and glycosaminoglycan deposition by human dermal fibroblasts encapsulated in alginate. Hoechst 33258 assay for cell number, hydroxyproline assay for collagen content, dimethylmethylene blue assay for glycosaminoglycan content and scanning electron microscopy were performed on the encapsulated cells treated with pulsed low-intensity ultrasound and a control group that remained untreated. Pulsed low-intensity ultrasound showed a significant effect on cell proliferation and collagen deposition but no consistent pattern for glycosaminoglycan content.

View Article and Find Full Text PDF

In this study, the effect of pulsed-low intensity ultrasound on cell proliferation, collagen production and glycosaminoglycan deposition by 3T3 fibroblasts encapsulated in alginate was evaluated. Hoechst 33258 assay for cell number, hydroxyproline assay for collagen content and dimethylamine blue assay for glycosaminoglycan content were performed on samples from cell cultures treated with pulsed-low intensity ultrasound and a control group. Pulsed-low intensity ultrasound shows no effect on cell proliferation, while collagen and glycosaminoglycan contents were consistently higher in the samples treated with pulsed-low intensity ultrasound, showing a statistically significant difference (p < 0.

View Article and Find Full Text PDF

A new 2D method to implement transient contact using Comsol Multiphysics (finite element analysis software that enables multiphysics simulations) is described, which is based on Hertzian contact. This method is compared to the existing (default) contact method that does not enable real transient simulations, but instead performs steady-state solutions where time is a constant. The two types of contact modelling have been applied to simple 2D biological heart valve models, undergoing strains in the region of 10% under 20 kPa pressure (applied over 0.

View Article and Find Full Text PDF

Background: A laboratory study was conducted, on cadaveric sheep spines to develop an effective procedure for removing as much nucleus as possible from an intervertebral disc with minimal disruption to the annulus. The results of many studies involving removal of nucleus, including chemonucleolysis, using chymopapain, have been published but we are not aware of any previous quantitative studies on procedures for removing as much nucleus as possible from the disc.

Methods: All procedures were performed via a 3 mm trocar.

View Article and Find Full Text PDF