Publications by authors named "David William Green"

Synthetic protocells are rudimentary origin-of-life versions of natural cell counterparts. Protocells are widely engineered to advance efforts and useful accepted outcomes in synthetic biology, soft matter chemistry and bioinspired materials chemistry. Protocells in collective symbiosis generate synthetic proto-tissues that display unprecedented autonomy and yield advanced materials with desirable life-like features for smart multi-drug delivery, micro bioreactors, renewable fuel production, environmental clean-up, and medicine.

View Article and Find Full Text PDF

Cleft palate is one of the most common craniofacial defects in newborn babies. The characteristics of this genetic disease produce soft and hard tissue defects on the lip and maxilla, which cause not only aesthetic but also functional problems with speech, eating, and breathing. Bone grafts using autologous cancellous bone have been a standard treatment to repair the hard tissue defect in cleft palates.

View Article and Find Full Text PDF

Regenerative orthopedics needs significant devices to transplant human stem cells into damaged tissue and encourage automatic growth into replacements suitable for the human skeleton. Soft biomaterials have similarities in mechanical, structural and architectural properties to natural extracellular matrix (ECM), but often lack essential ECM molecules and signals. Here we engineer mineralized polysaccharide beads to transform MSCs into osteogenic cells and osteoid tissue for transplantation.

View Article and Find Full Text PDF

Regenerative orthopedics needs significant devices to transplant human stem cells into damaged tissue and encourage automatic growth into replacements suitable for the human skeleton. Soft biomaterials have similarities in mechanical, structural and architectural properties to natural extracellular matrix (ECM), but often lack essential ECM molecules and signals. Here we engineer mineralized polysaccharide beads to transform MSCs into osteogenic cells and osteoid tissue for transplantation.

View Article and Find Full Text PDF

Background: A biotooth is defined as a complete living tooth, made in laboratory cultures from a spontaneous interplay between epithelial and mesenchymal cell-based frontal systems. A good solution to these problems is to use induced pluripotent stem cells (iPSCs). However, no one has yet formulated culture conditions that effectively differentiate iPSCs into dental epithelial and dental mesenchymal cells phenotypes analogous to those present in tooth development.

View Article and Find Full Text PDF

Periodontitis and peri-implantitis are inflammatory diseases caused by periodontal pathogenic bacteria leading to destruction of supporting periodontal/peri-implant tissue. However, the progression of inflammatory process of these two diseases is different. The bacterial biofilm is the source of bacteria during the inflammatory process.

View Article and Find Full Text PDF

Enamel knot (EK) is known to be a central organ in tooth development, especially for cusp patterning. To trace the exact position and movement among the inner dental epithelium (IDE) and EK cells, and to monitor the relationship between the EK and cusp patterning, it is essential that we understand the cell cycle status of the EK in early stages of tooth development. In this study, thymidine analogous (IdU, BrdU) staining was used to evaluate the cell cycle phase of the primary EK at the early casp stage (E13.

View Article and Find Full Text PDF

The external epithelial surfaces of plants and animals are frequently carpeted with small micro- and nanostructures, which broadens their adaptive capabilities in challenging physical habitats. Hairs and other shaped protuberances manage with excessive water, light contaminants, predators or parasites in innovative ways. We are interested in transferring these intricate architectures onto biomedical devices and daily-life surfaces.

View Article and Find Full Text PDF

Objectives: The aim of this study was to investigate whether in vitro stimulation of dental pulp stem cells (DPSCs) by tumour necrosis factor alpha (TNF-α) would induce secretion of EphB2/ephrin-B1 signalling.

Materials And Methods: Dental pulp stem cells isolated from human dental pulp were treated with TNF-α (5-100 ng/ml) over 2-48 h. EphB2/ephrin-B1 mRNA and protein levels were measured by real-time polymerase chain reaction (RT-PCR) and western blot analysis respectively.

View Article and Find Full Text PDF

The success of bioengineered dental pulp depends on two principles, (1) whether the transplanted tissue can develop its own vascular endothelial tubule network and (2) whether the host vasculature can be induced to penetrate the bioengineered pulp replacement and conjoin. Major inductive molecules that participate in laying down blood vessels include vascular endothelial growth factor (VEGF), ephrinB2, and hypoxia-inducible factor 1α (HIF-1α). Being able to modulate the genes encoding these angiogenic molecules is a therapeutic target in pulp regeneration for endogenous blood vessel formation, prevention of graft rejection, and exclusion of infection.

View Article and Find Full Text PDF

Background. Age-related macular degeneration (AMD) is a complex disorder that affects primarily the macula involving the retinal pigment epithelium (RPE) but also to a certain extent the photoreceptor layer and the retinal neurons. Cell transplantation is a promising option for AMD and clinical trials are underway using different cell types.

View Article and Find Full Text PDF

This paper proposes that different experimental contexts (single or dual language contexts) permit different neural loci at which words in the target language can be selected. However, in order to develop a fuller understanding of the neural circuit mediating language control we need to consider the community context in which bilingual speakers typically use their two languages (the behavioral ecology of bilingual speakers). The contrast between speakers from code-switching and non-code-switching communities offers a way to increase our understanding of the cortical, subcortical and, in particular, cerebellar structures involved in language control.

View Article and Find Full Text PDF