Publications by authors named "David Wexler"

Sluggish kinetics of the CO reduction/evolution reactions lead to the accumulation of LiCO residuals and thus possible catalyst deactivation, which hinders the long-term cycling stability of Li-CO batteries. Apart from catalyst design, constructing a fluorinated solid-electrolyte interphase is a conventional strategy to minimize parasitic reactions and prolong cycle life. However, the catalytic effects of solid-electrolyte interphase components have been overlooked and remain unclear.

View Article and Find Full Text PDF

This paper explores the innovative concept of using wearable technologies as a medium for musical expression. Special emphasis is placed on a unique wearable device equipped with motion, touch, and acceleration sensors, which can be used as a wrist strap, hand strap, or surface drum pad. The aim is to create a new musical instrument that simplifies music learning and expression and makes them more intuitive.

View Article and Find Full Text PDF

The middle corona, the region roughly spanning heliocentric distances from 1.5 to 6 solar radii, encompasses almost all of the influential physical transitions and processes that govern the behavior of coronal outflow into the heliosphere. The solar wind, eruptions, and flows pass through the region, and they are shaped by it.

View Article and Find Full Text PDF

The melting and solidification process of S32101 duplex stainless steel (DSS) was investigated using high-temperature confocal microscopy (HTCM). The method of concentric HTCM was employed to study microstructure evolution during the solidification process of S32101 DSS. This method could artificially create a meniscus-shaped solid-liquid interface, which dramatically improved the quality of in situ observations.

View Article and Find Full Text PDF

Aqueous monovalent-ion batteries have been rapidly developed recently as promising energy storage devices in large-scale energy storage systems owing to their fast charging capability and high power densities. In recent years, Prussian blue analogues, polyanion-type compounds, and layered oxides have been widely developed as cathodes for aqueous monovalent-ion batteries because of their low cost and high theoretical capacity. Furthermore, many design strategies have been proposed to expand their electrochemical stability window by reducing the amount of free water molecules and introducing an electrolyte addictive.

View Article and Find Full Text PDF

In this clinical validation study, we developed and validated a urinary Q-Score generated from the quantitative test QSant, formerly known as QiSant, for the detection of biopsy-confirmed acute rejection in kidney transplants. Using a cohort of 223 distinct urine samples collected from three independent sites and from both adult and pediatric renal transplant patients, we examined the diagnostic utility of the urinary Q-Score for detection of acute rejection in renal allografts. Statistical models based upon the measurements of the six QSant biomarkers (cell-free DNA, methylated-cell-free DNA, clusterin, CXCL10, creatinine, and total protein) generated a renal transplant Q-Score that reliably differentiated stable allografts from acute rejections in both adult and pediatric renal transplant patients.

View Article and Find Full Text PDF

Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped (N-doped) three-dimensional reduced graphene oxide aerogel-based architecture (Co/CoO-NGA) were synthesized through a facile hydrothermal method followed by annealing treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-NGA to facilitate the catalytic reaction. The synthesized Co/CoO-NGA was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable oxygen reduction performance with excellent methanol resistance and better durability compared with Pt/C.

View Article and Find Full Text PDF

Nitrogen-doped crumpled graphene (NCG) is successfully synthesized via vapor phase deposition of polypyrrole onto graphene aerogel followed by thermal treatment. The NCG was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable electrocatalytic performance with the commercial Pt/C in alkaline membrane exchange fuel cells because of the well-regulated nitrogen doping and the robust micro-3D crumpled porous nanostructure.

View Article and Find Full Text PDF

Purpose: Canagliflozin is a sodium-glucose cotransporter 2 inhibitor approved for the treatment of type 2 diabetes mellitus (T2DM). Because T2DM is often associated with renal or hepatic impairment, understanding the effects of these comorbid conditions on the pharmacokinetics of canagliflozin, and further assessing its safety, in these special populations is essential. Two open-label studies evaluated the pharmacokinetics, pharmacodynamics (renal study only), and safety of canagliflozin in participants with hepatic or renal impairment.

View Article and Find Full Text PDF

Nano-Germanium/polypyrrole composite has been synthesized by chemical reduction method in aqueous solution. The Ge nanoparticles were directly coated on the surface of the polypyrrole. The morphology and structural properties of samples were determined by X-ray diffraction, scanning electron microscopy and transmission electron microscopy.

View Article and Find Full Text PDF

An exfoliated MoS2-C composite (E-MoS2-C) was prepared via simple chemical exfoliation and a hydrothermal method. The obtained E-MoS2-C was tested as an anode material for sodium ion batteries. High capacity (~400 mA h g(-1)) at 0.

View Article and Find Full Text PDF

Sodium-ion energy storage, including sodium-ion batteries (NIBs) and electrochemical capacitive storage (NICs), is considered as a promising alternative to lithium-ion energy storage. It is an intriguing prospect, especially for large-scale applications, owing to its low cost and abundance. MoS2 sodiation/desodiation with Na ions is based on the conversion reaction, which is not only able to deliver higher capacity than the intercalation reaction, but can also be applied in capacitive storage owing to its typically sloping charge/discharge curves.

View Article and Find Full Text PDF

Objective. Most snakebite deaths occur prior to hospital arrival; yet inexpensive, effective, and easy to administer out-of-hospital treatments do not exist. Acetylcholinesterase inhibitors can be therapeutic in neurotoxic envenomations when administered intravenously, but nasally delivered drugs could facilitate prehospital therapy for these patients.

View Article and Find Full Text PDF

The effects of different temperatures on the hydrogen sorption characteristics of double-walled carbon nanotubes (DWCNTs) with palladium loading have been investigated. When we use different temperatures, the particle sizes and specific surface areas of the samples are different, which affects the hydrogen storage capacity of the DWCNTs. In this work, the amount of hydrogen storage capacity was determined (by AMC Gas Reactor Controller) to be 1.

View Article and Find Full Text PDF

In recent years, the controlled synthesis of inorganic micro- and nanostructures with hollow interiors has attracted considerable attention because of their widespread potential applications. A feasible method for synthesizing Li3 VO4 by a template-free, solution synthesis of single-crystalline microboxes with well-defined non-spherical morphologies has been reported. This study provides the useful information to produce other hollow structure materials to the broad audience of readers.

View Article and Find Full Text PDF

Palladium-nickel (PdNi) hollow nanoparticles were synthesized via a modified galvanic replacement method using Ni nanoparticles as sacrificial templates in an aqueous medium. X-ray diffraction and transmission electron microscopy show that the as-synthesized nanoparticles are alloyed nanostructures and have hollow interiors with an average particle size of 30 nm and shell thickness of 5 nm. Compared with the commercially available Pt/C or Pd/C catalysts, the synthesized PdNi/C has superior electrocatalytic performance towards the oxygen reduction reaction, which makes it a promising electrocatalyst for alkaline anion exchange membrane fuel cells and alkali-based air-batteries.

View Article and Find Full Text PDF

To explore good anode materials of high safety, high reversible capacity, good cycling, and excellent rate capability, a Li3VO4 microbox with wall thickness of 40 nm was prepared by a one-pot and template-free in situ hydrothermal method. In addition, its composite with graphene nanosheets of about six layers of graphene was achieved. Both of them, especially the Li3VO4/graphene nanosheets composite, show superior electrochemical performance to the formerly reported vanadium-based anode materials.

View Article and Find Full Text PDF

Iron doped CeO2 nanoparticles with doping concentrations between 0 and 30 mol% were synthesized by the co-precipitation method for potential application as a pigmented ultraviolet filtration material. Each sample was calcined in air and in argon. The iron solubility limit in the CeO2 lattice was found to be between 10 and 20 mol%.

View Article and Find Full Text PDF

A tin nanoparticle/polypyrrole (nano-Sn/PPy) composite was prepared by chemically reducing and coating Sn nanoparticles onto the PPy surface. The composite shows a much higher surface area than the pure nano-Sn reference sample, due to the porous higher surface area of PPy and the much smaller size of Sn in the nano-Sn/PPy composite than in the pure tin nanoparticle sample. Poly(vinylidene fluoride) (PVDF) and sodium carboxymethyl cellulose (CMC) were also used as binders, and the electrochemical performance was investigated.

View Article and Find Full Text PDF

Fe(3)O(4)-graphene composites with three-dimensional laminated structures have been synthesised by a simple in situ hydrothermal method. From field-emission and transmission electron microscopy results, the Fe(3)O(4) nanoparticles, around 3-15 nm in size, are highly encapsulated in a graphene nanosheet matrix. The reversible Li-cycling properties of Fe(3)O(4)-graphene have been evaluated by galvanostatic discharge-charge cycling, cyclic voltammetry and impedance spectroscopy.

View Article and Find Full Text PDF

First-in-human (FIH) studies are a critical step in the drug development process and typically aim to characterize a compound's pharmacokinetics, potential effective concentration or dose, and safety or tolerability margins. Although effort continues to enhance the predictive quality of the selection of FIH doses from preclinical data, and little consensus is available on the design and conduct of FIH studies, detailed surveys describing general approaches taken in FIH studies are useful in the optimization of early-phase clinical drug development. Although allometric scaling techniques continue to provide poor predictive estimates for human pharmacokinetic parameters, FIH starting doses are selected with substantial safety factors applied to human equivalent dose, often in excess of regulatory guidelines.

View Article and Find Full Text PDF

A simple room-temperature solution chemical route for bulk synthesis of high quality alpha-Bi(2)O(3) nanowires has been demonstrated. The nanowires have a diameter of about 50 nm and a length in the range of several to tens of micrometers. It was found that oleic acid played an important role in directing the growth of alpha- Bi(2)O(3) nanowires along the [102] direction, and the diameter of the nanowires increased with an increase of the reaction temperature.

View Article and Find Full Text PDF

Nanostructured NiO/C composite for lithium-ion battery anode was synthesized by a simple hydrothermal method and subsequent calcination. X-ray powder diffraction (XRD) showed that the composite was composed of carbon and nanocrystalline NiO. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed a dense and uniform distribution of fine NiO particles, with particle sizes ranging from 7-20 nm, within the carbon matrix.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session04itpoe1o0vep3mjccl5tntf8c8cd8jh): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once