Background: DNA vaccines have been very poorly immunogenic in humans but have been an effective priming modality in prime-boost regimens. Methods to increase the immunogenicity of DNA vaccines are needed.
Methods: HIV Vaccine Trials Network (HVTN) studies 070 and 080 were multicenter, randomized, clinical trials.
Renal glutamine synthetase catalyzes the reaction of NH4+ with glutamate, forming glutamine and decreasing the ammonia available for net acid excretion. The purpose of the present study was to determine glutamine synthetase's specific cellular expression in the mouse kidney and its regulation by hypokalemia, a common cause of altered renal ammonia metabolism. Glutamine synthetase mRNA and protein were present in the renal cortex and in both the outer and inner stripes of the outer medulla.
View Article and Find Full Text PDFRenal ammonia metabolism and transport mediates a central role in acid-base homeostasis. In contrast to most renal solutes, the majority of renal ammonia excretion derives from intrarenal production, not from glomerular filtration. Renal ammoniagenesis predominantly results from glutamine metabolism, which produces 2 NH4(+) and 2 HCO3(-) for each glutamine metabolized.
View Article and Find Full Text PDFMarburg and Ebola hemorrhagic fevers have been described as the most virulent viral diseases known to man due to associative lethality rates of up to 90%. Death can occur within days to weeks of exposure and there is currently no licensed vaccine or therapeutic. Recent evidence suggests an important role for antiviral T cells in conferring protection, but little detailed analysis of this response as driven by a protective vaccine has been reported.
View Article and Find Full Text PDFThe human body has developed an elaborate defense system against microbial pathogens and foreign antigens. However, particular microbes have evolved sophisticated mechanisms to evade immune surveillance, allowing persistence within the human host. In an effort to combat such infections, intensive research has focused on the development of effective prophylactic and therapeutic countermeasures to suppress or clear persistent viral infections.
View Article and Find Full Text PDFViral diversity is considered a major impediment to the development of an effective HIV-1 vaccine. Despite this diversity, certain protein segments are nearly invariant across the known HIV-1 Group M sequences. We developed immunogens based on the highly conserved elements from the p24(gag) region according to two principles: the immunogen must (i) include strictly conserved elements of the virus that cannot mutate readily, and (ii) exclude both HIV regions capable of mutating without limiting virus viability, and also immunodominant epitopes located in variable regions.
View Article and Find Full Text PDFBackground: Functional cross-talk between seven transmembrane (7TM) receptors can dramatically alter their pharmacological properties, both in vitro and in vivo. This represents an opportunity for the development of novel therapeutics that potentially target more specific biological effects while causing fewer adverse events. Although several studies convincingly have established the existence of 7TM receptor cross-talk, little is known about the frequencey and biological significance of this phenomenon.
View Article and Find Full Text PDFChikungunya virus (CHIKV) is an important emerging mosquito-borne alphavirus, indigenous to tropical Africa and Asia. It can cause epidemic fever and acute illness characterized by fever and arthralgias. The epidemic cycle of this infection is similar to dengue and urban yellow fever viral infections.
View Article and Find Full Text PDFThe ammonia transporter family member, Rh B Glycoprotein (RhBG/Rhbg), is essential for ammonia transport by the rodent kidney, but in the human kidney mRNA but not protein expression has been reported. Because ammonia transport is fundamental for acid-base homeostasis, the current study addressed RhBG expression in the human kidney. Two distinct RhBG mRNA sequences have been reported, with different numbers of consecutive cytosines at nt1265 and thus encoding different carboxy-tails.
View Article and Find Full Text PDFNumerous studies have suggested that an effective Hepatitis C Virus (HCV) vaccine must induce strong cytotoxic and IFN-γ+ T cell responses targeting the non-structural region of the virus. Most importantly, these responses must be able to migrate into and remain functional within the liver, an organ known to cause T cell tolerance. Using three novel HCV DNA vaccines encoding non-structural proteins NS4B, NS5A and NS5B, we assessed the ability of peripheral immunization to induce functional intrahepatic immunity both in the presence and absence of cognate HCV antigen expression within the liver.
View Article and Find Full Text PDFThe ammonia transporter family member, Rh B Glycoprotein (Rhbg), is an ammonia-specific transporter heavily expressed in the kidney and is necessary for the normal increase in ammonia excretion in response to metabolic acidosis. Hypokalemia is a common clinical condition in which there is increased renal ammonia excretion despite the absence of metabolic acidosis. The purpose of this study was to examine Rhbg's role in this response through the use of mice with intercalated cell-specific Rhbg deletion (IC-Rhbg-KO).
View Article and Find Full Text PDFThe Rhesus factor protein, Rh C glycoprotein (Rhcg), is an ammonia transporter whose expression in the collecting duct is necessary for normal ammonia excretion both in basal conditions and in response to metabolic acidosis. Hypokalemia is a common clinical condition associated with increased renal ammonia excretion. In contrast to basal conditions and metabolic acidosis, increased ammonia excretion during hypokalemia can lead to an acid-base disorder, metabolic alkalosis, rather than maintenance of acid-base homeostasis.
View Article and Find Full Text PDFA significant hurdle in vaccine development for many infectious pathogens is the ability to generate appropriate immune responses at the portal of entry, namely mucosal sites. The development of vaccine approaches resulting in secretory IgA and mucosal cellular immune responses against target pathogens is of great interest and in general, requires live viral infection at mucosal sites. Using HIV-1 and influenza A antigens as models, we report here that a novel systemically administered DNA vaccination strategy utilizing co-delivery of the specific chemokine molecular adjuvant CCL25 (TECK) can produce antigen-specific immune responses at distal sites including the lung and mesenteric lymph nodes in mice.
View Article and Find Full Text PDFThere is no licensed vaccine or cure for human cytomegalovirus (CMV), a ubiquitous β-herpesvirus infecting 60-95% of adults worldwide. Infection can cause congenital abnormalities, result in severe disease in immunocompromised patients, and is a major impediment during successful organ transplantation. In addition, it has been associated with numerous inflammatory diseases and cancers, as well as being implicated in the development of essential hypertension, a major risk factor for heart disease.
View Article and Find Full Text PDFHum Vaccin Immunother
November 2012
HIV preferentially infects activated T cells, and activated mucosal CD4+ T cells are the primary sites of viral replication. One potential explanation for increased HIV acquisition rates in the STEP study is that vaccination with adenoviral (Ad) vectors increased CD4+ T cell activation levels at the site of infection, a concept that others and we continue to explore. Whether vaccination with HIV vaccine platforms increases the activation state of CD4+ T cells within peripheral tissues, such as the gastro-intestinal (GI) mucosa, is exceptionally important to determine as a vaccine safety measure, given the susceptibility of activated CD4+ T cells to HIV infection.
View Article and Find Full Text PDFDespite the development of highly effective prophylactic vaccines against human papillomavirus (HPV) serotypes 16 and 18, prevention of cervical dysplasia and cancer in women infected with high-risk HPV serotypes remains an unmet medical need. We report encouraging phase 1 safety, tolerability, and immunogenicity results for a therapeutic HPV16/18 candidate vaccine, VGX-3100, delivered by in vivo electroporation (EP). Eighteen women previously treated for cervical intraepithelial neoplasia grade 2 or 3 (CIN2/3) received a three-dose (intramuscular) regimen of highly engineered plasmid DNA encoding HPV16 and HPV18 E6/E7 antigens followed by EP in a dose escalation study (0.
View Article and Find Full Text PDFMost atypical antipsychotic drugs (APDs), e.g. risperidone (RIS), produce more extensive blockade of brain serotonin (5-HT)(2A) than dopamine (DA) D(2) receptors.
View Article and Find Full Text PDFDNA represents an ideal vaccine platform for HIV and many infectious diseases because of its safety, stability, and ease of manufacture. However, the immunogenicity of DNA vaccines has traditionally been low compared with viral vectors, recombinant protein, and live attenuated vaccines. The immunogenicity of DNA vaccines has been significantly enhanced by delivery with in vivo electroporation.
View Article and Find Full Text PDFInterleukin-21 (IL-21) is a T-cell-derived cytokine that modulates T-cell, B-cell, and natural killer cell responses. It is not known if it could be used as an adjuvant for HIV DNA vaccination. In our study, we investigated if a DNA construct expressing IL-21 (designated as pVAX-IL-21) as a molecule adjuvant could enhance antigen-specific immune responses to an HIV DNA vaccine (pGX-EnvC).
View Article and Find Full Text PDFBackground: Laparoscopic-assisted hepatic resection (LAHR) has been described as a safe and reliable means of liver resection for tumors or live-donor hepatectomy. Here we compare the outcomes in paired cohorts between patients undergoing open hepatic resection (OHR) and LAHR.
Study Design: Two hundred and twelve patients who underwent either OHR or LAHR from March 2004 to July 2011 were analyzed to assess outcomes.
The safety, stability, and ability for repeat homologous vaccination makes the DNA vaccine platform an excellent candidate for an effective HIV-1 vaccine. However, the immunogenicity of early DNA vaccines did not translate from small animal models into larger non-human primates and was markedly lower than viral vectors. In addition to improvements to the DNA vector itself, delivery with electroporation, the inclusion of molecular adjuvants, and heterologous prime-boost strategies have dramatically improved the immunogenicity of DNA vaccines for HIV and currently makes them a leading platform with many areas warranting further research and clinical development.
View Article and Find Full Text PDFOne limitation in the development of an improved cellular response needed for an effective HIV-vaccine is the inability to induce robust effector T-cells capable of suppressing a heterologous challenge. To improve cellular immune responses, we examined the ability of an optimized DNA vaccine to boost the cellular immune responses induced by a highly immunogenic Ad5 prime. Five Chinese rhesus macaques received pVax encoding consensus (con) gag/pol/env intramuscularly (IM) with electroporation followed by the Merck Ad5 gag/pol/nef vaccine.
View Article and Find Full Text PDF