Most tumors initially respond to treatment, yet refractory clones subsequently develop owing to resistance mechanisms associated with cancer cell plasticity and heterogeneity. We used a chemical biology approach to identify protein targets in cancer cells exhibiting diverse driver mutations and representing models of tumor lineage plasticity and therapy resistance. An unbiased screen of a drug library was performed against cancer cells followed by synthesis of chemical analogs of the most effective drug.
View Article and Find Full Text PDFCancer cells undergo a significant level of "metabolic reprogramming" or "remodeling" to ensure an adequate supply of ATP and "building blocks" for cell survival and to facilitate accelerated proliferation. Cancer cells preferentially use glycolysis for ATP production (the Warburg effect); however, cancer cells, including colorectal cancer (CRC) cells, also depend on oxidative phosphorylation (OXPHOS) for ATP production, a finding that suggests that both glycolysis and OXPHOS play significant roles in facilitating cancer progression and proliferation. Our prior studies identified a semisynthetic isoflavonoid, DBI-1, that served as an AMPK activator targeting mitochondrial complex I.
View Article and Find Full Text PDFAlthough high-throughput, cancer cell-line screening is a time-honored, important tool for anti-cancer drug development, this process involves the testing of each, individual drug in each, individual cell-line. Despite the availability of robotic liquid handling systems, this process remains a time-consuming and costly investment. The Broad Institute developed a new method called Profiling Relative Inhibition Simultaneously in Mixtures (PRISM) to screen a mixture of barcoded, tumor cell-lines.
View Article and Find Full Text PDFThe deregulation in the Wnt/β-catenin signaling pathway is associated with many human cancers, particularly colorectal cancer (CRC) and, therefore, represents a promising target for drug development. We have screened over 300 semisynthetic and natural compounds using a Wnt reporter assay and identified a family of novel chalcone derivatives (CXs) that inhibited Wnt signaling and CRC cell proliferation. Among them, we selected CX258 for further in vitro and in vivo study to investigate the molecular mechanisms.
View Article and Find Full Text PDFLung cancer is the leading cause of cancer-related deaths. Lung cancer cells develop resistance to apoptosis by suppressing the secretion of the tumor suppressor Par-4 protein (also known as PAWR) and/or down-modulating the Par-4 receptor GRP78 on the cell surface (csGRP78). We sought to identify FDA-approved drugs that elevate csGRP78 on the surface of lung cancer cells and induce Par-4 secretion from the cancer cells and/or normal cells in order to inhibit cancer growth in an autocrine or paracrine manner.
View Article and Find Full Text PDFRegulatory T cells (Tregs) are essential to maintain self-tolerance and immune homeostasis but, as components of the tumor microenvironment (TME), are also a major barrier to effective cancer immunosurveillance and immunotherapy. FH535 and its derivative Y3 are two N-aryl-benzene-sulfonamides (NABs) that inhibit HCC cell proliferation and tumor progression. However, the impact of NABs on the immune cells in the TME is not yet known.
View Article and Find Full Text PDFCancer cells undergo significant "metabolic remodeling" to provide sufficient ATP to maintain cell survival and to promote rapid growth. In colorectal cancer cells, ATP is produced by mitochondrial oxidative phosphorylation and by substantially elevated cytoplasmic glucose fermentation (i.e.
View Article and Find Full Text PDFEpithelial ovarian cancer (EOC) is the leading cause of death from gynecologic malignancies and requires new therapeutic strategies to improve clinical outcomes. EOC metastasizes in the abdominal cavity through dissemination in the peritoneal fluid and ascites, efficiently adapt to the nutrient-deprived microenvironment, and resist current chemotherapeutic agents. Accumulating evidence suggests that mitochondrial oxidative phosphorylation is critical for the adaptation of EOC cells to this otherwise hostile microenvironment.
View Article and Find Full Text PDFDeveloping effective treatments for colorectal cancers through combinations of small-molecule approaches and immunotherapies present intriguing possibilities for managing these otherwise intractable cancers. During a broad-based, screening effort against multiple colorectal cancer cell lines, we identified indole-substituted quinolines (ISQ), such as -dimethyl-3-(1-methyl-1-indol-3-yl)quinoline-2,7-diamine (ISQ-1), as potent inhibitors of several cancer cell lines. We found that ISQ-1 inhibited Wnt signaling, a main driver in the pathway governing colorectal cancer development, and ISQ-1 also activated adenosine monophosphate kinase (AMPK), a cellular energy-homeostasis master regulator.
View Article and Find Full Text PDFLeishmaniasis, a disease caused by protozoa of the species, afflicts roughly 12 million individuals worldwide. Most existing drugs for leishmaniasis are toxic, expensive, difficult to administer, and subject to drug resistance. We report a new class of antileishmanial leads, the 3-arylquinolines, that potently block proliferation of the intramacrophage amastigote form of parasites with good selectivity relative to the host macrophages.
View Article and Find Full Text PDFAndrogen-deprivation therapy (ADT) is only a palliative measure, and prostate cancer invariably recurs in a lethal, castration-resistant form (CRPC). Prostate cancer resists ADT by metabolizing weak, adrenal androgens to growth-promoting 5α-dihydrotestosterone (DHT), the preferred ligand for the androgen receptor (AR). Developing small-molecule inhibitors for the final steps in androgen metabolic pathways that utilize 17-oxidoreductases required probes that possess fluorescent groups at C-3 and intact, naturally occurring functionality at C-17.
View Article and Find Full Text PDFAberrant activation of Wnt signaling triggered by mutations in either () or (β-catenin) is a hallmark of colorectal cancers (CRC). As part of a program to develop epigenetic regulators for cancer therapy, we developed carboxamide-substituted benzhydryl amines (CBAs) bearing either aryl or heteroaryl groups that selectively targeted histone lysine demethylases (KDMs) and functioned as inhibitors of the Wnt pathway. A biotinylated variant of -((5-chloro-8-hydroxyquinolin-7-yl) (4-(diethylamino)phenyl)-methyl)butyramide (CBA-1) identified KDM3A as a binding partner.
View Article and Find Full Text PDFFluorinated aryl- and heteroaryl-substituted monohydrazones displayed excellent broad-spectrum activity against various fungal strains, including a panel of clinically relevant Candida auris strains relative to a control antifungal agent, voriconazole (VRC). These monohydrazones displayed less hemolysis of murine red blood cells than that of VRC at the same concentrations, possessed fungicidal activity in a time-kill study, and exhibited no mammalian cell cytotoxicity. In addition, these monohydrazones prevented the formation of biofilms that otherwise block antibiotic effectiveness and did not trigger the development of resistance when exposed to C.
View Article and Find Full Text PDFBackground: Hepatocellular Carcinoma (HCC) is the third most common cause of cancer related death worldwide. Adequate treatment options for patients with advanced HCC are currently limited.
Materials And Methods: We studied the anti-HCC effect of FH535 and a novel derivative Y3, on proliferation, mitochondrial function and cellular metabolism focusing on the three key substrates, glutamine, glucose, and fatty acids.
The emergence of new fungal pathogens makes the development of new antifungal drugs a medical imperative that in recent years motivates the talents of numerous investigators across the world. Understanding not only the structural families of these drugs but also their biological targets provides a rational means for evaluating the merits and selectivity of new agents for fungal pathogens and normal cells. An equally important aspect of modern antifungal drug development takes a balanced look at the problems of drug potency and drug resistance.
View Article and Find Full Text PDFThe importance of upregulated Wnt signaling in colorectal cancers led to efforts to develop inhibitors that target β-catenin in this pathway. We now report that several "Wnt inhibitors" that allegedly target β-catenin actually function as mitochondrial proton uncouplers that independently activate AMPK and concomitantly inhibit Wnt signaling. As expected for a process in which mitochondrial uncoupling diminishes ATP production, a mitochondrial proton uncoupler, FCCP, and a glucose metabolic inhibitor, 2-DG, activated AMPK and inhibited Wnt signaling.
View Article and Find Full Text PDFColorectal cancer (CRC) is the second leading cause of cancer deaths in the US with the majority of deaths due to metastatic disease. Current chemotherapeutic regimens involve highly toxic agents, which limits their utility; therefore, more effective and less toxic agents are required to see a reduction in CRC mortality. Novel fluorinated N,N'-diarylureas (FND) were developed and characterized by our group as potent activators of adenosine monophosphate-activated kinase (AMPK) that inhibit cell cycle progression.
View Article and Find Full Text PDFStructure-activity relationships (SAR) in the aurone pharmacophore identified heterocyclic variants of the (Z)-2-benzylidene-6-hydroxybenzofuran-3(2H)-one scaffold that possessed low nanomolar in vitro potency in cell proliferation assays using various cancer cell lines, in vivo potency in prostate cancer PC-3 xenograft and zebrafish models, selectivity for the colchicine-binding site on tubulin, and absence of appreciable toxicity. Among the leading, biologically active analogs were (Z)-2-((2-((1-ethyl-5-methoxy-1H-indol-3-yl)methylene)-3-oxo-2,3-dihydrobenzofuran-6-yl)oxy)acetonitrile (5a) and (Z)-6-((2,6-dichlorobenzyl)oxy)-2-(pyridin-4-ylmethylene)benzofuran-3(2H)-one (5b) that inhibited in vitro PC-3 prostate cancer cell proliferation with IC values below 100 nM. A xenograft study in nude mice using 10 mg/kg of 5a had no effect on mice weight, and aurone 5a did not inhibit, as desired, the human ether-à-go-go-related (hERG) potassium channel.
View Article and Find Full Text PDFPurpose: Triple negative breast cancer (TNBC) is the most lethal and aggressive subtype of breast cancer. AMP-activated protein kinase (AMPK) is a major energy regulator that suppresses tumor growth, and 1-(3-chloro-4-((trifluoromethyl)thio)phenyl)-3-(4-(trifluoromethoxy)phenyl)urea (FND-4b) is a novel AMPK activator that inhibits growth and induces apoptosis in colon cancer. The purpose of this project was to test the effects of FND-4b on AMPK activation, proliferation, and apoptosis in breast cancer with a particular emphasis on TNBC.
View Article and Find Full Text PDFAutophagy targets cellular components for lysosomal-dependent degradation in which the products of degradation may be recycled for protein synthesis and utilized for energy production. Autophagy also plays a critical role in cell homeostasis and the regulation of many physiological and pathological processes and prompts this investigation of new agents to effect abnormal autophagy in hepatocellular carcinoma (HCC). 2,5-Dichloro-N-(2-methyl-4-nitrophenyl) benzenesulfonamide (FH535) is a synthetic inhibitor of the Wnt/β-catenin pathway that exhibits anti-proliferative and anti-angiogenic effects on different types of cancer cells.
View Article and Find Full Text PDFN,N'-Diaryl-bishydrazones of [1,1'-biphenyl]-3,4'-dicarboxaldehyde, [1,1'-biphenyl]-4,4'-dicarboxaldehyde, and 4,4'-bisacetyl-1,1-biphenyl exhibited excellent antifungal activity against a broad spectrum of filamentous and non-filamentous fungi. These N,N'-diaryl-bishydrazones displayed no antibacterial activity in contrast to previously reported N,N'-diamidino-bishydrazones and N-amidino-N'-aryl-bishydrazones. The leading candidate, 4,4'-bis((E)-1-(2-(4-fluorophenyl)hydrazono)ethyl)-1,1'-biphenyl, displayed less hemolysis of murine red blood cells at concentrations at or below that of a control antifungal agent (voriconazole), was fungistatic in a time-kill study, and possessed no mammalian cytotoxicity and no toxicity with respect to hERG inhibition.
View Article and Find Full Text PDFAn efficient method for regioselective synthesis of C-7 Mannich bases of 6-hydroxyaurones was accomplished by the -dialkylaminomethylation using aminals prepared from dimethylamine, dipropylamine, bis(2-methoxyethyl)amine, -methylbutylamine, -methylbenzylamine, morpholine, piperidine, and 1-methylpiperazine. Further transformation of 7-(-dialkylamino)methyl group in these aurones led to formation of C-7 acetoxymethyl and methoxymethyl derivatives of 6-hydroxyaurones, some of which showed promising inhibition of PC-3 prostate cancer cell proliferation in the high nanomolar to low micromolar range that exceeded that of cisplatin.
View Article and Find Full Text PDFBackground: Progression of castration-recurrent/resistant prostate cancer (CRPC) relies in part on dihydrotestosterone derived from intratumoral androgen metabolism. Mathematical modeling provides a valuable tool for studies of androgen metabolism in CRPC. This modeling approach integrates existing knowledge about complex biologic systems and provides a means of interrogating the effects of various interventions.
View Article and Find Full Text PDFIntroduction: The systemic inflammatory response has been proven to have a prognostic value. There are two methods of assessing the systemic inflammatory response composite ratios (R) and cumulative scores (S). The aim of this study was to compare the prognostic value of ratios and scores in patients undergoing surgery for colon cancer.
View Article and Find Full Text PDF