Recovery of Contractile Function of Stunned Myocardium in Chronically Instrumented Dogs Is Enhanced by Halothane or Isoflurane. By Warltier DC, al-Wathiqui MH, Kampine JP, and Schmeling WT. ANESTHESIOLOGY 1988; 69:552-65.
View Article and Find Full Text PDFBackground: Diabetes impairs the cardioprotective effect of volatile anesthetics, yet the mechanisms are still murky. We examined the regulatory effect of isoflurane on microRNA-21, endothelial nitric-oxide synthase, and mitochondrial respiratory complex I in type 2 diabetic mice.
Methods: Myocardial ischemia/reperfusion injury was produced in obese type 2 diabetic (db/db) and C57BL/6 control mice ex vivo in the presence or absence of isoflurane administered before ischemia.
Diabetic cardiomyopathy increases the risk of heart failure and death. At present, there are no effective approaches to preventing its development in the clinic. Here we report that reduction of cardiac GTP cyclohydrolase 1 (GCH1) degradation by genetic and pharmacological approaches protects the heart against diabetic cardiomyopathy.
View Article and Find Full Text PDFBackground: Diabetic heart disease is associated with tetrahydrobiopterin oxidation and high arginase activity, leading to endothelial nitric oxide synthase dysfunction. Sepiapterin (SEP) is a tetrahydrobiopterin precursor, and L-citrulline (L-Cit) is converted to endothelial nitric oxide synthase substrate, L-arginine. Whether SEP and L-Cit are effective at reducing diabetic heart disease is not known.
View Article and Find Full Text PDFBackground: The role of microRNA-21 in isoflurane-induced cardioprotection is unknown. The authors addressed this issue by using microRNA-21 knockout mice and explored the underlying mechanisms.
Methods: C57BL/6 and microRNA-21 knockout mice were echocardiographically examined.
Background: The authors investigated the hypothesis that isoflurane modulates nitric oxide (NO) synthesis and protection against myocardial infarction through time-dependent changes in expression of key NO regulatory proteins, guanosine triphosphate cyclohydrolase (GTPCH)-1, the rate-limiting enzyme involved in the biosynthesis of tetrahydrobiopterin and endothelial nitric oxide synthase (eNOS).
Methods: Myocardial infarct size, NO production (ozone-mediated chemiluminescence), GTPCH-1, and eNOS expression (real-time reverse transcriptase polymerase chain reaction and western blotting) were measured in male Wistar rats with or without anesthetic preconditioning (APC; 1.0 minimum alveolar concentration isoflurane for 30 min) and in the presence or absence of an inhibitor of GTPCH-1, 2,4-diamino-6-hydroxypyrimidine.
Background: Diabetes alters mitochondrial bioenergetics and consequently disrupts cardioprotective signaling. The authors investigated whether mitochondrial DNA (mtDNA) modulates anesthetic preconditioning (APC) and cardiac susceptibility to ischemia-reperfusion injury by using two strains of rats, both sharing nuclear genome of type 2 diabetes mellitus (T2DN) rats and having distinct mitochondrial genomes of Wistar and fawn-hooded hypertensive (FHH) rat strains (T2DN(mtWistar) and T2DN(mtFHH), respectively).
Methods: Myocardial infarct size was measured in Wistar, T2DN(mtWistar), and T2DN(mtFHH) rats with or without APC (1.
Endothelial-myocardial interactions may be critically important for ischemia/reperfusion injury. Tetrahydrobiopterin (BH4) is a required cofactor for nitric oxide (NO) production by endothelial NO synthase (eNOS). Hyperglycemia (HG) leads to significant increases in oxidative stress, oxidizing BH4 to enzymatically incompetent dihydrobiopterin.
View Article and Find Full Text PDFNitric oxide (NO) is a crucial mediator of hindlimb collateralization and angiogenesis. Within tissues there are nitrosyl-heme proteins which have the potential to generate NO under conditions of hypoxia or low pH. Low level irradiation of blood and muscle with light in the far red/near infrared spectrum (670 nm, R/NIR) facilitates NO release.
View Article and Find Full Text PDFCardioprotection by ischemic preconditioning (IPC) is impaired during hyperglycemia, but the mechanisms underlying this phenomenon are poorly understood. This study investigated the role of hyperglycemia to adversely modulate tetrahydrobiopterin (BH(4)) and heat shock protein 90 (Hsp90) during cardioprotection by IPC. Rabbits or mice underwent 30 min of coronary occlusion followed by reperfusion with or without IPC in the presence or absence of hyperglycemia.
View Article and Find Full Text PDFBackground: Reactive oxygen species (ROS) mediate the effects of anesthetic precondition to protect against ischemia and reperfusion injury, but the mechanisms of ROS generation remain unclear. In this study, the authors investigated if mitochondria-targeted antioxidant (mitotempol) abolishes the cardioprotective effects of anesthetic preconditioning. Further, the authors investigated the mechanism by which isoflurane alters ROS generation in isolated mitochondria and submitochondrial particles.
View Article and Find Full Text PDFEndothelial cells (EC) serve a paracrine function to enhance signaling in cardiomyocytes (CM), and conversely, CM secrete factors that impact EC function. Understanding how EC interact with CM may be critically important in the context of ischemia-reperfusion injury, where EC might promote CM survival. We used isoflurane as a pharmacological stimulus to enhance EC protection of CM against hypoxia and reoxygenation injury.
View Article and Find Full Text PDFAims: Hyperglycaemia (HG) decreases intracellular tetrahydrobiopterin (BH(4)) concentrations, and this action may contribute to injury during myocardial ischaemia and reperfusion. We investigated whether increased BH(4) by cardiomyocyte-specific overexpression of the GTP cyclohydrolase (GTPCH) 1 gene rescues myocardial and mitochondrial protection by ischaemic preconditioning (IPC) during HG through a nitric oxide (NO)-dependent pathway.
Methods And Results: Mice underwent 30 min of myocardial ischaemia followed by 2 h of reperfusion with or without IPC elicited with four cycles of 5 min ischaemia/5 min of reperfusion in the presence or absence of HG produced by d-glucose.
Objective: To determine if preoperative history of post-traumatic stress disorder (PTSD) is associated with postoperative cognitive impairment.
Design: An observational study.
Setting: Veterans Affairs Medical Center.
Objective: To determine if preoperative psychosocial factors including dispositional optimism, perceived social support, and perceived stress correlate with the recovery of postoperative cognition.
Design: Observational study.
Setting: Veterans Affairs medical center.
Background: Endothelial nitric oxide synthase activity is regulated by (6R-)5,6,7,8-tetrahydrobiopterin (BH4) and heat shock protein 90. The authors tested the hypothesis that hyperglycemia abolishes anesthetic preconditioning (APC) through BH4- and heat shock protein 90-dependent pathways.
Methods: Myocardial infarct size was measured in rabbits in the absence or presence of APC (30 min of isoflurane), with or without hyperglycemia, and in the presence or absence of the BH4 precursor sepiapterin.
Postoperative delirium with cognitive impairment frequently occurs after cardiac surgery. It was hypothesized that delirium is associated with residual postoperative cognitive dysfunction in patients after surgery using cardiopulmonary bypass. Male cardiac surgical patients (M age = 66 yr.
View Article and Find Full Text PDFPostoperative cognitive dysfunction (POCD) commonly occurs after cardiac surgery. We tested the hypothesis that a history of alcohol dependence is associated with an increased incidence and severity of POCD in male patients undergoing cardiac surgery using cardiopulmonary bypass. Recent verbal and nonverbal memory and executive functions were assessed before and one week after surgery in patients with or without a history of alcohol dependence.
View Article and Find Full Text PDFBackground: The role of endothelial nitric oxide synthase (eNOS) in isoflurane postconditioning (IsoPC)-elicited cardioprotection is poorly understood. The authors addressed this issue using eNOS mice.
Methods: In vivo or Langendorff-perfused mouse hearts underwent 30 min of ischemia followed by 2 h of reperfusion in the presence and absence of postconditioning produced with isoflurane 5 min before and 3 min after reperfusion.
Am J Physiol Heart Circ Physiol
October 2009
Several recent studies have demonstrated that the transplantation of pluripotent murine embryonic stem cells (mESCs) can improve or restore the function of infarcted myocardium. Although the extent of remuscularization and its contribution to the restoration of function are unclear, these outcomes are likely strongly influenced by factors in the infarcted and/or ischemic environment. As an initial step toward understanding how the ischemic environment of host myocardium affects transplanted pluripotent cells, we have taken a reductionist approach wherein mESCs are cultured in medium containing ischemic myocardial interstitial fluid (iMIF).
View Article and Find Full Text PDFNitric oxide is an important messenger in numerous biological processes, such as angiogenesis, hypoxic vasodilation, and cardioprotection. Although nitric oxide synthases (NOS) produce the bulk of NO, there is increasing interest in NOS independent generation of NO in vivo, particularly during hypoxia or anoxia, where low oxygen tensions limit NOS activity. Interventions that can increase NO bioavailability have significant therapeutic potential.
View Article and Find Full Text PDFJ Cardiothorac Vasc Anesth
October 2009
Objective: To determine if ketamine attenuates postoperative delirium concomitant with an anti-inflammatory effect in patients undergoing cardiac surgery using cardiopulmonary bypass.
Design: A prospective randomized study.
Setting: A Veterans Affairs medical center.
Objectives: Brief, repetitive administration of helium before prolonged coronary artery occlusion and reperfusion protects myocardium against infarction. Opioid receptors mediate the cardioprotective effects of ischemic pre- and postconditioning, but whether these receptors also play a role in helium preconditioning is unknown. The authors tested the hypotheses that opioid receptors mediate helium preconditioning and that morphine (a mu(1)-opioid receptor agonist with delta(1)-opioid agonist properties) lowers the threshold of cardioprotection produced by helium in vivo.
View Article and Find Full Text PDF