Publications by authors named "David Waitzman"

Introduction: Optic perineuritis (OPN) is a previously undescribed sequela of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here we present a case of OPN that developed several weeks after initial confirmation of the presence of novel coronavirus RNA in the nasopharynx by polymerase chain reaction assay and subsequent confirmation of SARS-CoV-2 IgG seropositivity in the absence of other systemic inflammatory or infectious markers.

Case Report: An asymptomatic 71-year-old man with noninsulin-dependent diabetes mellitus (NIDDM) tested RNA positive for SARS-CoV-2 during a routine screening of patients at a skilled nursing facility.

View Article and Find Full Text PDF

The rostral superior colliculus (rSC) encodes position errors for multiple types of eye movements, including microsaccades, small saccades, smooth pursuit, and fixation. Here we address whether the rSC contributes to the development of neural signals that are suitable for controlling vergence eye movements. We use both single-unit recording and microstimulation techniques in monkey to answer this question.

View Article and Find Full Text PDF

Previous single unit recordings and electrical stimulation have suggested that separate regions of the MRF participate in the control of vergence and conjugate eye movements. Neurons in the supraoculomotor area (SOA) have been found to encode symmetric vergence [Zhang, Y. et al.

View Article and Find Full Text PDF

A gaze-related region in the caudal midbrain tegementum, termed the central mesencephalic reticular formation (cMRF), has been designated on electrophysiological grounds in monkeys. In macaques, the cMRF correlates with an area in which reticulotectal neurons overlap with tectoreticular terminals. We examined whether a region with the same anatomical characteristics exists in cats by injecting biotinylated dextran amine into their superior colliculi.

View Article and Find Full Text PDF

The oculomotor system must convert signals representing the target of an intended eye movement into appropriate input to drive the individual extraocular muscles. Neural models propose that this transformation may involve either a decomposition of the intended eye displacement signal into horizontal and vertical components or an implicit process whereby component signals do not predominate until the level of the motor neurons. Thus decomposition models predict that premotor neurons should primarily encode component signals while implicit models predict encoding of off-cardinal optimal directions by premotor neurons.

View Article and Find Full Text PDF

Neurones in the central mesencephalic reticular formation (cMRF) begin to discharge prior to saccades. These long lead burst neurones interact with major oculomotor centres including the superior colliculus (SC) and the paramedian pontine reticular formation (PPRF). Three different functions have been proposed for neurones in the cMRF: (1) to carry eye velocity signals that provide efference copy information to the SC (feedback), (2) to provide duration signals from the omnipause neurones to the SC (feedback), or (3) to participate in the transformation from the spatial encoding of a target selection signal in the SC into the temporal pattern of discharge used to drive the excitatory burst neurones in the pons (feed-forward).

View Article and Find Full Text PDF

Prior studies of the central portion of the mesencephalic reticular formation (cMRF) have shown that in head-restrained monkeys, neurons discharge prior to saccades. Here, we provide a systematic analysis of the patterns of activity in cMRF neurons during head unrestrained gaze shifts. Two types of cMRF neurons were found: presaccadic neurons began to discharge before the onset of gaze movements, while postsaccadic neurons began to discharge after gaze shift onset and typically after the end of the gaze shift.

View Article and Find Full Text PDF

The accompanying paper demonstrated two distinct types of central mesencephalic reticular formation (cMRF) neuron that discharged before or after the gaze movement: pre-saccadic or post-saccadic. The movement fields of pre-saccadic neurons were most closely associated with gaze displacement. The movement fields of post-saccadic neurons were most closely associated with head displacement.

View Article and Find Full Text PDF

Purpose: It has been shown that mutations in the optineurin (OPTN) gene are involved in the etiology of adult-onset primary open-angle glaucoma (POAG). In view of close similarities between human and nonhuman primate ocular development and function, the rhesus monkey is considered a suitable model for human visual system research. Therefore, this study was conducted to clone the orthologue of the human OPTN gene in the rhesus monkey (Rh-OPTN) and to determine its genomic organization.

View Article and Find Full Text PDF

Purpose: To report results of treatment with a monoclonal antibody (infliximab) directed against tumor necrosis factor alpha in seven patients with chronic and difficult-to-control idiopathic orbital inflammation (orbital myositis).

Design: Observational case series.

Methods: Retrospective data were collected from seven patients who had idiopathic orbital inflammation and who were evaluated at three medical centers.

View Article and Find Full Text PDF

Converging lines of evidence support a role for the intermediate and deep layers of the superior colliculus (SC) and the mesencephalic reticular formation (MRF) in the control of combined head and eye movements (i.e., gaze).

View Article and Find Full Text PDF