Serial section transmission electron microscopy (TEM) has proven to be one of the leading methods for millimeter-scale 3D imaging of brain tissues at nanoscale resolution. It is important to further improve imaging efficiency to acquire larger and more brain volumes. We report here a threefold increase in the speed of TEM by using a beam deflecting mechanism to enable highly efficient acquisition of multiple image tiles (nine) for each motion of the mechanical stage.
View Article and Find Full Text PDFThe precise neural mechanisms within the brain that contribute to the remarkable lifetime persistence of memory are not fully understood. Two-photon calcium imaging allows the activity of individual cells to be followed across long periods, but conventional approaches require head-fixation, which limits the type of behavior that can be studied. We present a magnetic voluntary head-fixation system that provides stable optical access to the brain during complex behavior.
View Article and Find Full Text PDFDecision making is traditionally thought to be mediated by populations of neurons whose firing rates persistently accumulate evidence across time. However, recent decision-making experiments in rodents have observed neurons across the brain that fire sequentially as a function of spatial position or time, rather than persistently, with the subset of neurons in the sequence depending on the animal's choice. We develop two new candidate circuit models, in which evidence is encoded either in the relative firing rates of two competing chains of neurons or in the network location of a stereotyped pattern ("bump") of neural activity.
View Article and Find Full Text PDFElectron microscopy of biological tissue has recently seen an unprecedented increase in imaging throughput moving the ultrastructural analysis of large tissue blocks such as whole brains into the realm of the feasible. However, homogeneous, high-quality electron microscopy staining of large biological samples is still a major challenge. To date, assessing the staining quality in electron microscopy requires running a sample through the entire staining protocol end-to-end, which can take weeks or even months for large samples, rendering protocol optimization for such samples to be inefficient.
View Article and Find Full Text PDFA fundamental principle of biological motor control is that the neural commands driving movement must conform to the response properties of the motor plants they control. In the oculomotor system, characterizations of oculomotor plant dynamics traditionally supported models in which the plant responds to neural drive to extraocular muscles on exclusively short, subsecond timescales. These models predict that the stabilization of gaze during fixations between saccades requires neural drive that approximates eye position on longer timescales and is generated through the temporal integration of brief eye velocity-encoding signals that cause saccades.
View Article and Find Full Text PDFCortical areas seem to form a hierarchy of intrinsic timescales, but the relevance of this organization for cognitive behavior remains unknown. In particular, decisions requiring the gradual accrual of sensory evidence over time recruit widespread areas across this hierarchy. Here, we tested the hypothesis that this recruitment is related to the intrinsic integration timescales of these widespread areas.
View Article and Find Full Text PDFPopulation recordings of calcium activity are a major source of insight into neural function. Large datasets require automated processing, but this can introduce errors that are difficult to detect. Here we show that popular time course-estimation algorithms often contain substantial misattribution errors affecting 10-20% of transients.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2022
To explore how neural circuits represent novel versus familiar inputs, we presented mice with repeated sets of images with novel images sparsely substituted. Using two-photon calcium imaging to record from layer 2/3 neurons in the mouse primary visual cortex, we found that novel images evoked excess activity in the majority of neurons. This novelty response rapidly emerged, arising with a time constant of 2.
View Article and Find Full Text PDFRecent work has highlighted that many types of variables are represented in each neocortical area. How can these many neural representations be organized together without interference and coherently maintained/updated through time? We recorded from excitatory neural populations in posterior cortices as mice performed a complex, dynamic task involving multiple interrelated variables. The neural encoding implied that highly correlated task variables were represented by less-correlated neural population modes, while pairs of neurons exhibited a spectrum of signal correlations.
View Article and Find Full Text PDFHippocampal neurons encode physical variables such as space or auditory frequency in cognitive maps. In addition, functional magnetic resonance imaging studies in humans have shown that the hippocampus can also encode more abstract, learned variables. However, their integration into existing neural representations of physical variables is unknown.
View Article and Find Full Text PDFBackground: The past decade has seen a multitude of new in vivo functional imaging methodologies. However, the lack of ground-truth comparisons or evaluation metrics makes the large-scale, systematic validation vital to the continued development and use of optical microscopy impossible.
New-method: We provide a new framework for evaluating two-photon microscopy methods via in silico Neural Anatomy and Optical Microscopy (NAOMi) simulation.
How does the brain internally represent a sequence of sensory information that jointly drives a decision-making behavior? Studies of perceptual decision-making have often assumed that sensory cortices provide noisy but otherwise veridical sensory inputs to downstream processes that accumulate and drive decisions. However, sensory processing in even the earliest sensory cortices can be systematically modified by various external and internal contexts. We recorded from neuronal populations across posterior cortex as mice performed a navigational decision-making task based on accumulating randomly timed pulses of visual evidence.
View Article and Find Full Text PDFLarge scientific projects in genomics and astronomy are influential not because they answer any single question but because they enable investigation of continuously arising new questions from the same data-rich sources. Advances in automated mapping of the brain's synaptic connections (connectomics) suggest that the complicated circuits underlying brain function are ripe for analysis. We discuss benefits of mapping a mouse brain at the level of synapses.
View Article and Find Full Text PDFDuring spatial navigation, animals use self-motion to estimate positions through path integration. However, estimation errors accumulate over time and it is unclear how they are corrected. Here we report a new cell class ('cue cell') encoding visual cues that could be used to correct errors in path integration in mouse medial entorhinal cortex (MEC).
View Article and Find Full Text PDFWe develop a phenomenological coarse-graining procedure for activity in a large network of neurons, and apply this to recordings from a population of 1000+ cells in the hippocampus. Distributions of coarse-grained variables seem to approach a fixed non-Gaussian form, and we see evidence of scaling in both static and dynamic quantities. These results suggest that the collective behavior of the network is described by a nontrivial fixed point.
View Article and Find Full Text PDFNeural activity throughout the cortex is correlated with perceptual decisions, but inactivation studies suggest that only a small number of areas are necessary for these behaviors. Here we show that the number of required cortical areas and their dynamics vary across related tasks with different cognitive computations. In a visually guided virtual T-maze task, bilateral inactivation of only a few dorsal cortical regions impaired performance.
View Article and Find Full Text PDFTo select actions based on sensory evidence, animals must create and manipulate representations of stimulus information in memory. Here we report that during accumulation of somatosensory evidence, optogenetic manipulation of cerebellar Purkinje cells reduces the accuracy of subsequent memory-guided decisions and causes mice to downweight prior information. Behavioral deficits are consistent with the addition of noise and leak to the evidence accumulation process.
View Article and Find Full Text PDFThere is increased appreciation that dopamine neurons in the midbrain respond not only to reward and reward-predicting cues, but also to other variables such as the distance to reward, movements and behavioural choices. An important question is how the responses to these diverse variables are organized across the population of dopamine neurons. Whether individual dopamine neurons multiplex several variables, or whether there are subsets of neurons that are specialized in encoding specific behavioural variables remains unclear.
View Article and Find Full Text PDFWidefield imaging of calcium dynamics is an emerging method for mapping regional neural activity but is currently limited to restrained animals. Here we describe cScope, a head-mounted widefield macroscope developed to image large-scale cortical dynamics in rats during natural behavior. cScope provides a 7.
View Article and Find Full Text PDFHow the topography of neural circuits relates to their function remains unclear. Although topographic maps exist for sensory and motor variables, they are rarely observed for cognitive variables. Using calcium imaging during virtual navigation, we investigated the relationship between the anatomical organization and functional properties of grid cells, which represent a cognitive code for location during navigation.
View Article and Find Full Text PDFThe hippocampus plays a critical role in goal-directed navigation. Across different environments, however, hippocampal maps are randomized, making it unclear how goal locations could be encoded consistently. To address this question, we developed a virtual reality task with shifting reward contingencies to distinguish place versus reward encoding.
View Article and Find Full Text PDFThe gradual accumulation of sensory evidence is a crucial component of perceptual decision making, but its neural mechanisms are still poorly understood. Given the wide availability of genetic and optical tools for mice, they can be useful model organisms for the study of these phenomena; however, behavioral tools are largely lacking. Here, we describe a new evidence-accumulation task for head-fixed mice navigating in a virtual reality (VR) environment.
View Article and Find Full Text PDFDiscussions of the hippocampus often focus on place cells, but many neurons are not place cells in any given environment. Here we describe the collective activity in such mixed populations, treating place and non-place cells on the same footing. We start with optical imaging experiments on CA1 in mice as they run along a virtual linear track and use maximum entropy methods to approximate the distribution of patterns of activity in the population, matching the correlations between pairs of cells but otherwise assuming as little structure as possible.
View Article and Find Full Text PDF