Publications by authors named "David W Stock"

The origin and diversification of appendage types is a central question in vertebrate evolution. Understanding the genetic mechanisms that underlie fin and limb development can reveal relationships between different appendages. Here we demonstrate, using chemical genetics, a mutually agonistic interaction between Fgf and Shh genes in the developing dorsal fin of the channel catfish, .

View Article and Find Full Text PDF

Morphological diversification during adaptive radiation may depend on factors external or internal to the lineage. We provide evidence for the latter in characiform fishes (tetras and piranhas), which exhibit extensive dental diversity. Phylogenetic character mapping supported regain of lost teeth as contributing to this diversity.

View Article and Find Full Text PDF

The cuckoo catfish, Synodontis multipunctatus, is the only known obligate brood parasite among fishes, exploiting the parental care of mouthbrooding cichlids endemic to Lake Tanganyika. Comparisons of this system to brood parasitism in birds may reveal broader principles that underlie the evolution of this life-history strategy in vertebrates. However, little is known about the features of the cuckoo catfish that enable this species to successfully parasitize cichlids.

View Article and Find Full Text PDF

The apparent irreversibility of the loss of complex traits in evolution (Dollo's Law) has been explained either by constraints on generating the lost traits or the complexity of selection required for their return. Distinguishing between these explanations is challenging, however, and little is known about the specific nature of potential constraints. We investigated the mechanisms underlying the irreversibility of trait loss using reduction of dentition in cypriniform fishes, a lineage that includes the zebrafish (Danio rerio) as a model.

View Article and Find Full Text PDF

Teeth with two or more cusps have arisen independently from an ancestral unicuspid condition in a variety of vertebrate lineages, including sharks, teleost fishes, amphibians, lizards, and mammals. One potential explanation for the repeated origins of multicuspid teeth is the existence of multiple adaptive pathways leading to them, as suggested by their different uses in these lineages. Another is that the addition of cusps required only minor changes in genetic pathways regulating tooth development.

View Article and Find Full Text PDF

Background: The accessibility of the developing zebrafish pharyngeal dentition makes it an advantageous system in which to study many aspects of tooth development from early initiation to late morphogenesis. In mammals, hedgehog signaling is known to be essential for multiple stages of odontogenesis; however, potential roles for the pathway during initiation of tooth development or in later morphogenesis are incompletely understood.

Results: We have identified mRNA expression of the hedgehog ligands shha and the receptors ptc1 and ptc2 during zebrafish pharyngeal tooth development.

View Article and Find Full Text PDF

Bone morphogenetic protein (Bmp) signaling has been shown to play important roles in tooth development at virtually all stages from initiation to hard tissue formation. The specific ligands involved in these processes have not been directly tested by loss-of-function experiments, however. We used morpholino antisense oligonucleotides and mutant analysis in the zebrafish to reduce or eliminate the function of bmp2b and bmp4, two ligands known to be expressed in zebrafish teeth and whose mammalian orthologs are thought to play important roles in tooth development.

View Article and Find Full Text PDF

One of the goals of evolutionary developmental biology is to link specific adaptations to changes in developmental pathways. The dentition of cypriniform fishes, which in contrast to many other teleost fish species possess pharyngeal teeth but lack oral teeth, provides a suitable model to study the development of feeding adaptations. Here, we have examined the involvement of retinoic acid (RA) in tooth development and show that RA is specifically required to induce the pharyngeal tooth developmental program in zebrafish.

View Article and Find Full Text PDF
Zebrafish dentition in comparative context.

J Exp Zool B Mol Dev Evol

September 2007

Studies of the zebrafish (Danio rerio) promise to contribute much to an understanding of the developmental genetic mechanisms underlying diversification of the vertebrate dentition. Tooth development, structure, and replacement in the zebrafish largely reflect the primitive condition of jawed vertebrates, providing a basis for comparison with features of the more extensively studied mammalian dentition. A distinctive derived feature of the zebrafish dentition is restriction of teeth to a single pair of pharyngeal bones.

View Article and Find Full Text PDF

It has been considered a "law" that a lost structure cannot reappear in evolution. The common explanation, that genes required for the development of the lost structure degrade by mutation, remains largely theoretical, however. Additionally, the extent to which this mechanism applies to systems of repeated parts, where individual modules are likely to exhibit few unique aspects of genetic control, is unclear.

View Article and Find Full Text PDF

The diversity of tooth location in teleost fishes provides an excellent system for comparing genetic divergence between teeth in different species (phylogenetic homologs) with divergence between teeth within one species (iterative homologs). We have chosen to examine the expression of three members of the bone morphogenetic protein (Bmp) family because they are known to play multiple roles in tooth development and evolution in tetrapod vertebrates. We characterized expression of Bmp2a, Bmp2b, and Bmp4 during the development of oral and pharyngeal dentitions in three species of teleost fishes, the zebrafish (Danio rerio), Mexican tetra (Astyanax mexicanus), and Japanese medaka (Oryzias latipes).

View Article and Find Full Text PDF

The fossil record indicates that cypriniform fishes, a group including the zebrafish, lost oral teeth over 50 million years ago. Despite subsequent diversification of feeding modes, no cypriniform has regained oral teeth, suggesting the zebrafish as a model for studying the developmental genetic basis of evolutionary constraint. To investigate the mechanism of cypriniform tooth loss, we compared the oral expression of seven genes whose mammalian orthologs are involved in tooth initiation in the zebrafish and the Mexican tetra, Astyanax mexicanus, a related species retaining oral teeth.

View Article and Find Full Text PDF

Endothelin1 (Edn1) signaling promotes ventral character to the facial skeleton. In zebrafish edn1 mutants, the ventral jaw structures are severely reduced and fused to their dorsal counterparts, with a loss of joints that normally form at an intermediate dorsal-ventral position. Loss of function at another locus, sturgeon, also yields joint losses, but only mild reductions in the ventral jaw structures.

View Article and Find Full Text PDF

Extensive gene duplication is thought to have occurred in the vertebrate lineage after it diverged from cephalochordates and before the divergence of lobe- and ray-finned fishes, but the exact timing remains obscure. This timing was investigated by analysis of the Dlx gene family of a representative cartilaginous fish, the leopard shark, Triakis semifasciata. Dlx genes encode homeodomain transcription factors and are arranged in mammals as three convergently transcribed bigene clusters.

View Article and Find Full Text PDF

Hedgehog (Hh) proteins are responsible for critical signalling events during development but their evolutionary roles remain to be determined. Here we show that hh gene expression at the embryonic midline controls eye degeneration in blind cavefish. We use the teleost Astyanax mexicanus, a single species with an eyed surface-dwelling form (surface fish) and many blind cave forms (cavefish), to study the evolution of eye degeneration.

View Article and Find Full Text PDF

We have investigated fibroblast growth factor (FGF) signaling during the development of the zebrafish pharyngeal dentition with the goal of uncovering novel roles for FGFs in tooth development as well as phylogenetic and topographic diversity in the tooth developmental pathway. We found that the tooth-related expression of several zebrafish genes is similar to that of their mouse orthologs, including both epithelial and mesenchymal markers. Additionally, significant differences in gene expression between zebrafish and mouse teeth are indicated by the apparent lack of fgf8 and pax9 expression in zebrafish tooth germs.

View Article and Find Full Text PDF

We studied the development and evolution of craniofacial features in the teleost fish, Astyanax mexicanus. This species has an eyed surface dwelling form (surface fish) and many different cave dwelling forms (cavefish) with various degrees of reduced eyes and pigmentation. The craniofacial features we examined are the tooth-bearing maxillary bones, the nasal and antorbital bones, the circumorbital bones, and the opercular bones, all of which show evolutionary modifications in different cavefish populations.

View Article and Find Full Text PDF

Fibroblast growth factor (Fgf) signaling plays an important role during development of posterior mesoderm in vertebrate embryos. Blocking Fgf signaling by expressing a dominant-negative Fgf receptor inhibits posterior mesoderm development. In mice, Fgf8 appears to be the principal ligand required for mesodermal development, as mouse Fgf8 mutants do not form mesoderm.

View Article and Find Full Text PDF

The Dlx genes are involved in early vertebrate morphogenesis, notably of the head. The six Dlx genes of mammals are arranged in three convergently transcribed bigene clusters. In this study, we examine the regulation of the Dlx3-7 cluster of the mouse.

View Article and Find Full Text PDF