The author reminisces about some of his experiences working with Monte Carlo techniques for Medical Physics applications.
View Article and Find Full Text PDFAn addendum to the AAPM's TG-51 protocol for the determination of absorbed dose to water in megavoltage photon beams is presented. This addendum continues the procedure laid out in TG-51 but new kQ data for photon beams, based on Monte Carlo simulations, are presented and recommendations are given to improve the accuracy and consistency of the protocol's implementation. The components of the uncertainty budget in determining absorbed dose to water at the reference point are introduced and the magnitude of each component discussed.
View Article and Find Full Text PDFPurpose: Plane-parallel chambers are recommended by dosimetry protocols for measurements in (especially low-energy) electron beams. In dosimetry protocols, the replacement correction factor P(repl) is assumed unity for "well-guarded" plane-parallel chambers in electron beams when the front face of the cavity is the effective point of measurement. There is experimental evidence that ion chambers which are not well-guarded (e.
View Article and Find Full Text PDFSilicon semiconductor diodes measure almost the same depth-dose distributions in both photon and electron beams as those measured by ion chambers. A recent study in ion chamber dosimetry has suggested that the wall correction factor for a parallel-plate ion chamber in electron beams changes with depth by as much as 6%. To investigate diode detector response with respect to depth, a silicon diode model is constructed and the water/silicon dose ratio at various depths in electron beams is calculated using EGSnrc.
View Article and Find Full Text PDF