High grade serous ovarian cancer (HGSOC) is a major cause of female cancer mortality. The approval of poly (ADP-ribose) polymerase (PARP) inhibitors for clinical use has greatly improved treatment options for patients with homologous recombination repair (HRR)-deficient HGSOC, although the development of PARP inhibitor resistance in some patients is revealing limitations to outcome. A proportion of patients with HRR-proficient cancers also benefit from PARP inhibitor therapy.
View Article and Find Full Text PDFBackground: Macrophages show versatile functions in innate immunity, infectious diseases, and progression of cancers and cardiovascular diseases. These versatile functions of macrophages are conducted by different macrophage phenotypes classified as classically activated macrophages and alternatively activated macrophages due to different stimuli in the complex in vivo cytokine environment. Dissecting the regulation of macrophage activations will have a significant impact on disease progression and therapeutic strategy.
View Article and Find Full Text PDFBackground: The global incidence of melanoma has been increasing faster than any other form of cancer. New therapies offer exciting prospects for improved survival, but the development of resistance is a major problem and there remains a need for additional effective melanoma therapy. Platinum compounds, such as cisplatin, are the most effective chemotherapeutics for a number of major cancers, but are ineffective on metastatic melanoma.
View Article and Find Full Text PDFDNA repair pathways present in all cells serve to preserve genome stability, but in cancer cells they also act reduce the efficacy of chemotherapy. The endonuclease ERCC1-XPF has an important role in the repair of DNA damage caused by a variety of chemotherapeutic agents and there has been intense interest in the use of ERCC1 as a predictive marker of therapeutic response in non-small cell lung carcinoma, squamous cell carcinoma and ovarian cancer. We have previously validated ERCC1 as a therapeutic target in melanoma, but all small molecule ERCC1-XPF inhibitors reported to date have lacked sufficient potency and specificity for clinical use.
View Article and Find Full Text PDFSkeletal muscle regeneration requires coordination between dynamic cellular populations and tissue microenvironments. Macrophages, recruited via CCR2, are essential for regeneration; however, the contribution of macrophages and the role of CCR2 on nonhematopoietic cells has not been defined. In addition, aging and sex interactions in regeneration and sarcopenia are unclear.
View Article and Find Full Text PDFDynamic, epigenetic mechanisms can regulate macrophage phenotypes following exposure to different stimulating conditions and environments. However, temporal patterns of microRNAs (miRNAs or miRs) across multiple macrophage polarization phenotypes have not been defined. We determined miRNA expression in bone marrow-derived murine macrophages over multiple time points (0.
View Article and Find Full Text PDFA high throughput screen allowed the identification of N-hydroxyimide inhibitors of ERCC1-XPF endonuclease activity with micromolar potency, but they showed undesirable selectivity profiles against FEN-1. A scaffold hop to a hydroxypyrimidinone template gave compounds with similar potency but allowed selectivity to be switched in favour of ERCC1-XPF over FEN-1. Further exploration of the structure-activity relationships around this chemotype gave sub-micromolar inhibitors with >10-fold selectivity for ERCC1-XPF over FEN-1.
View Article and Find Full Text PDFCatechol-based inhibitors of ERCC1-XPF endonuclease activity were identified from a high-throughput screen. Exploration of the structure-activity relationships within this series yielded compound 13, which displayed an ERCC1-XPF IC50 of 0.6 μM, high selectivity against FEN-1 and DNase I and activity in nucleotide excision repair, cisplatin enhancement and γH2AX assays in A375 melanoma cells.
View Article and Find Full Text PDFJ Gerontol A Biol Sci Med Sci
August 2016
We demonstrated that young male and female mice similarly regenerated injured skeletal muscle; however, female mice transiently increased adipocyte area within regenerated muscle in a sex hormone-dependent manner. We extended these observations to investigate the effect of aging and sex on sarcopenia and muscle regeneration. Cardiotoxin injury to the tibialis anterior muscle of young, middle, and old-aged C57Bl/6J male and female mice was used to measure regenerated myofiber cross-sectional area (CSA), adipocyte area, residual necrosis, and inflammatory cell recruitment.
View Article and Find Full Text PDFERCC1-XPF is a structure-specific endonuclease that is required for the repair of DNA lesions, generated by the widely used platinum-containing cancer chemotherapeutics such as cisplatin, through the Nucleotide Excision Repair and Interstrand Crosslink Repair pathways. Based on mouse xenograft experiments, where ERCC1-deficient melanomas were cured by cisplatin therapy, we proposed that inhibition of ERCC1-XPF could enhance the effectiveness of platinum-based chemotherapy. Here we report the identification and properties of inhibitors against two key targets on ERCC1-XPF.
View Article and Find Full Text PDFMacrophages are important in vascular inflammation and environmental factors influence macrophage plasticity. Macrophage transitions into pro-inflammatory (M1) or anti-inflammatory (M2) states have been defined predominately by measuring cytokines in culture media (CM). However, temporal relationships between cellular and secreted cytokines have not been established.
View Article and Find Full Text PDFLevels of the actin bundling protein fascin correlate with invasion and metastasis and reveal prognostic value in many epithelial carcinomas. However, we know very little about the potential role of fascin in melanoma. The purpose of this study is to compare fascin expression in primary melanomas and melanoma metastasis.
View Article and Find Full Text PDFMonocyte/macrophage polarization in skeletal muscle regeneration is ill defined. We used CD11b-diphtheria toxin receptor transgenic mice to transiently deplete monocytes/macrophages at multiple stages before and after muscle injury induced by cardiotoxin. Fat accumulation within regenerated muscle was maximal when ablation occurred at the same time as cardiotoxin-induced injury.
View Article and Find Full Text PDFDNA mismatch repair (MMR) deficiency is associated with increased risk of developing several types of cancer and is the most common cause of hereditary ovarian cancer after BRCA1 and BRCA2 mutations. While there has been extensive investigation of MMR deficiency in colorectal cancer, MMR in ovarian cancer is relatively under-investigated. This review summarizes the mechanism of MMR, the ways in which MMR deficiency can promote carcinogenesis in general and then assesses the available studies regarding MMR deficiency in ovarian cancers with specific emphasis on implications for disease incidence and therapy.
View Article and Find Full Text PDFNitrofurans are commonly used for the treatment of trypanosomal diseases including Chagas disease. More recently, following the fortuitous discovery that nifurtimox was clinically active against neuroblastoma, nitrofuran compounds are being investigated for activity against cancer. Herein, we show that nitrofuran compounds are similarly potent to human malignant melanoma and neuroblastoma cells.
View Article and Find Full Text PDFThe emergence of microcarrier technology has brought a renewed interest in anchorage-dependent cell culture for high-yield processes. Well-known in vaccine production, microcarrier culture also has potential for application in other fields. In this work, two types of microcarriers were evaluated for small-scale monoclonal antibody (mAb) production by CHOK1 cells.
View Article and Find Full Text PDFCurrently, mammalian cell technology has become the focus of biopharmaceutical production, with strict regulatory scrutiny of the techniques employed. Major concerns about the presence of animal-derived components in the culture media led to the development of serum-free (SF) culture processes. However, cell adaptation to SF conditions is still a major challenge and limiting step of process development.
View Article and Find Full Text PDFAims: Elevated expression of DNA repair and replication genes has been reported in thick, non-fixed primary melanomas that subsequently went on to metastasize, when compared to non-recurrent primary tumours. This increased expression could contribute to the extreme resistance shown by melanoma to DNA-damaging chemotherapeutics. We have investigated the hypothesis that levels of key DNA repair and replication proteins are prognostic biomarkers in melanoma.
View Article and Find Full Text PDFMicroRNAs (miRNAs) regulate many biological processes including muscle development. However, little is known regarding miRNA regulation of muscle regeneration. Murine tibialis anterior muscle was evaluated after cardiotoxin-induced injury and used for global miRNA expression analysis.
View Article and Find Full Text PDFThe ERCC1-XPF complex is a structure-specific endonuclease essential for the repair of DNA damage by the nucleotide excision repair pathway. It is also involved in other key cellular processes, including DNA interstrand crosslink (ICL) repair and DNA double-strand break (DSB) repair. New evidence has recently emerged, increasing our understanding of its requirement in these additional roles.
View Article and Find Full Text PDFUnderstanding how drugs work in vivo is critical for drug design and for maximizing the potential of currently available drugs. 5-nitrofurans are a class of prodrugs widely used to treat bacterial and trypanosome infections, but despite relative specificity, 5-nitrofurans often cause serious toxic side effects in people. Here, we use yeast and zebrafish, as well as human in vitro systems, to assess the biological activity of 5-nitrofurans, and we identify a conserved interaction between aldehyde dehydrogenase (ALDH) 2 and 5-nitrofurans across these species.
View Article and Find Full Text PDFPigment Cell Melanoma Res
March 2012
The mitogen-activated protein kinase (MAPK) pathway is important in melanoma. In this pathway, DUSP6 phosphatase negatively controls the activation of extracellular signal-regulated (ERK) kinase. Through comparison of melanoma signalling pathways between immortal mouse melanocytes and their tumourigenic derivatives, retrieved from mouse xenografts, we identified a molecularly distinct subtype of melanoma, characterized by reduced ERK activity and increased DUSP6 expression.
View Article and Find Full Text PDFAims: Galectin-3 plays an important role in adhesion, proliferation, differentiation, angiogenesis and metastasis in multiple tumours. To investigate the role of galectin-3 in melanoma pathogenesis we examined the expression of galectin-3 in melanocytic lesions and analysed the correlation between galectin-3 expression and clinicopathologic factors including patient survival and BRAF mutation status.
Methods: We evaluated the expression of galectin-3 in 53 cases of benign naevi, 31 cases of dysplastic naevi, 59 in-situ melanomas, 314 cases of primary melanoma and 69 metastatic melanomas using tissue microarray and immunohistochemistry.
Age-related cognitive decline and neurodegenerative diseases are a growing challenge for our societies with their aging populations. Accumulation of DNA damage has been proposed to contribute to these impairments, but direct proof that DNA damage results in impaired neuronal plasticity and memory is lacking. Here we take advantage of Ercc1(Δ/-) mutant mice, which are impaired in DNA nucleotide excision repair, interstrand crosslink repair, and double-strand break repair.
View Article and Find Full Text PDF