Wetland ecosystems are vital for maintaining global biodiversity, as they provide important stopover sites for many species of migrating wetland-associated birds. However, because weather determines their hydrologic cycles, wetlands are highly vulnerable to effects of climate change. Although changes in temperature and precipitation resulting from climate change are expected to reduce inundation of wetlands, few efforts have been made to quantify how these changes will influence the availability of stopover sites for migratory wetland birds.
View Article and Find Full Text PDFLittle guidance is available to assist wetland managers in developing climate adaptation plans. To facilitate development of recommendations for adaptation strategies, it is essential to first determine if or how wetland managers are addressing these challenges. We used an online survey to solicit feedback from wetland managers and biologists in the Southern Great Plains of North America to gain information on perceptions of wetland managers regarding climate change; assess how the effects of climate change are being addressed through management; and identify barriers to implementing climate change adaptation.
View Article and Find Full Text PDFA vast global literature documents that free-roaming domestic cats (Felis catus) have substantial negative effects on wildlife, including through predation, fear, disease and competition-related impacts that have contributed to numerous wildlife extinctions and population declines worldwide. However, no study has synthesized this literature on cat impacts on wildlife to evaluate its overarching biases and major gaps. To direct future research and conservation related to cat impacts on wildlife, we conducted a global literature review that entailed evaluation and synthesis of patterns and gaps in the literature related to the geographic context, methods and types of impacts studied.
View Article and Find Full Text PDFMovement and selection are inherently linked behaviors that form the foundation of a species' space-use patterns. Anthropogenic development in natural ecosystems can result in a variety of behavioral responses that can involve changes in either movement (speed or direction of travel) or selection (resources used), which in turn may cause population-level consequences including loss of landscape connectivity. Understanding how a species alters these different behaviors in response to human activity is essential for effective conservation.
View Article and Find Full Text PDF