CH-π interactions between carbohydrates and aromatic amino acids play an essential role in biological systems that span all domains of life. Quantifying the strength and importance of these CH-π interactions is challenging because these interactions involve several atoms and can exist in many distinct orientations. To identify an orientational landscape of CH-π interactions, we constructed a dataset of close contacts formed between β-d-galactose residues and the aromatic amino acids, tryptophan, tyrosine, and phenylalanine, across crystallographic structures deposited in the Protein Data Bank.
View Article and Find Full Text PDFSalicylic acid (SA) production in Brassicaceae plants is uniquely accelerated from isochorismate by EPS1, a newly identified enzyme in the BAHD acyltransferase family. We present crystal structures of EPS1 from Arabidopsis thaliana in both its apo and substrate-analog-bound forms. Integrating microsecond-scale molecular dynamics simulations with quantum mechanical cluster modeling, we propose a pericyclic rearrangement lyase mechanism for EPS1.
View Article and Find Full Text PDFAzides are energy-rich compounds with diverse representation in a broad range of scientific disciplines, including material science, synthetic chemistry, pharmaceutical science and chemical biology. Despite ubiquitous usage of the azido group, the underlying biosynthetic pathways for its formation remain largely unknown. Here we report the characterization of an enzymatic route for de novo azide construction.
View Article and Find Full Text PDFMetalloenzymes catalyze a wide range of chemical transformations, with the active site residues playing a key role in modulating chemical reactivity and selectivity. Unlike smaller synthetic catalysts, a metalloenzyme active site is embedded in a larger protein, which makes interrogation of electronic properties and geometric features with quantum mechanical calculations challenging. Here we implement the ability to fetch crystallographic structures from the Protein Data Bank and analyze the metal binding sites in the program molSimplify.
View Article and Find Full Text PDFTransition-metal chromophores with earth-abundant transition metals are an important design target for their applications in lighting and nontoxic bioimaging, but their design is challenged by the scarcity of complexes that simultaneously have well-defined ground states and optimal target absorption energies in the visible region. Machine learning (ML) accelerated discovery could overcome such challenges by enabling the screening of a larger space but is limited by the fidelity of the data used in ML model training, which is typically from a single approximate density functional. To address this limitation, we search for consensus in predictions among 23 density functional approximations across multiple rungs of "Jacob's ladder".
View Article and Find Full Text PDFPlants contain rapidly evolving specialized enzymes that support the biosynthesis of functionally diverse natural products. In coumarin biosynthesis, a BAHD acyltransferase-family enzyme COSY was recently discovered to accelerate coumarin formation as the only known BAHD enzyme to catalyze an intramolecular acyl transfer reaction. Here we investigate the structural and mechanistic basis for COSY's coumarin synthase activity.
View Article and Find Full Text PDFThe Mo/W-containing metalloenzyme formate dehydrogenase (FDH) is an efficient and selective natural catalyst that reversibly converts CO to formate under ambient conditions. In this study, we investigate the impact of the greater protein environment on the electrostatic potential (ESP) of the active site. To model the enzyme environment, we used a combination of classical molecular dynamics and multiscale quantum-mechanical (QM)/molecular-mechanical (MM) simulations.
View Article and Find Full Text PDFTwo full-length analogs of the anticancer peptide yaku'amide A (1a) and four partial structures have been synthesized. These analogs were identified by computational studies in which the three - and -ΔIle residues of the natural product were replaced by the more accessible dehydroamino acids ΔVal and ΔEnv. Of the eight possible analogs, modeling showed that the targeted structures 2a and 2b most closely resembled the three-dimensional structure of 1a.
View Article and Find Full Text PDFWe report a workflow and the output of a natural language processing (NLP)-based procedure to mine the extant metal-organic framework (MOF) literature describing structurally characterized MOFs and their solvent removal and thermal stabilities. We obtain over 2,000 solvent removal stability measures from text mining and 3,000 thermal decomposition temperatures from thermogravimetric analysis data. We assess the validity of our NLP methods and the accuracy of our extracted data by comparing to a hand-labeled subset.
View Article and Find Full Text PDFThe isonitrile moiety is an electron-rich functionality that decorates various bioactive natural products isolated from diverse kingdoms of life. Isonitrile biosynthesis was restricted for over a decade to isonitrile synthases, a family of enzymes catalyzing a condensation reaction between l-Trp/l-Tyr and ribulose-5-phosphate. The discovery of ScoE, a non-heme iron(II) and α-ketoglutarate-dependent dioxygenase, demonstrated an alternative pathway employed by nature for isonitrile installation.
View Article and Find Full Text PDFASCL1 is a neuroendocrine lineage-specific oncogenic driver of small cell lung cancer (SCLC), highly expressed in a significant fraction of tumors. However, ∼25% of human SCLC are ASCL1-low and associated with low neuroendocrine fate and high MYC expression. Using genetically engineered mouse models (GEMMs), we show that alterations in in the mouse lung induce an ASCL1 state of SCLC in multiple cells of origin.
View Article and Find Full Text PDFSmall cell lung cancer (SCLC) is a neuroendocrine tumor treated clinically as a single disease with poor outcomes. Distinct SCLC molecular subtypes have been defined based on expression of ASCL1, NEUROD1, POU2F3, or YAP1. Here, we use mouse and human models with a time-series single-cell transcriptome analysis to reveal that MYC drives dynamic evolution of SCLC subtypes.
View Article and Find Full Text PDFA comparative study of the impact of small, medium-sized, and bulky α,β-dehydroamino acids (ΔAAs) on the structure and stability of Balaram's incipient 3-helical peptide () is reported. Replacement of the -terminal Aib residue of with a ΔAA afforded peptides - that maintained the 3-helical shape of . In contrast, installation of a ΔAA in place of Aib-3 yielded peptides - that preferred a β-sheet-like conformation.
View Article and Find Full Text PDFThe mitochondrial, or intrinsic, apoptosis pathway is regulated mainly by members of the B-cell lymphoma 2 (BCL-2) protein family. BCL-2-associated X apoptosis regulator (BAX) plays a pivotal role in the initiation of mitochondria-mediated apoptosis as one of the factors causing mitochondrial outer-membrane permeabilization (MOMP). Of current interest are endogenous BAX ligands that inhibit its MOMP activity.
View Article and Find Full Text PDFThe bulky dehydroamino acids dehydrovaline (ΔVal) and dehydroethylnorvaline (ΔEnv) can be inserted into the turn regions of β-hairpin peptides without altering their secondary structures. These residues increase proteolytic stability, with ΔVal at the (i + 1) position having the most substantial impact. Additionally, a bulky dehydroamino acid can be paired with a d-amino acid (i.
View Article and Find Full Text PDFAberrant gene expression is a hallmark of prostate cancer (PCa), the second deadliest disease affecting males worldwide. Dysregulation of miRNA has been associated with the progression of PCa and in recent studies, miRNA 574-3p was found to be upregulated in cancerous prostate tissue. In this study, we characterize the effects of upregulated miRNA 574-3p on gene expression in the tumor microenvironment through different bioinformatic tools such as Diana-Tools, the KEGG Pathway Database, and the Reactome Database.
View Article and Find Full Text PDF