Publications by authors named "David W Gammon"

Article Synopsis
  • Tuberculosis (TB) is a serious public health issue, necessitating the discovery of new drugs to combat it.
  • Researchers tested 54 marine invertebrate extracts for their ability to inhibit the bacteria that causes TB.
  • Two extracts were further analyzed, leading to the identification of bioactive compounds called bengamides, which demonstrated significant growth-inhibitory effects against TB, marking them as potential new treatments.
View Article and Find Full Text PDF

In this paper, we report on the chemistry of the rare South African Actinomycete strain SK5, a prolific producer of hydroxamate siderophores and their congeners. Two new analogues, dehydroxylated desferrioxamines, speibonoxamine and desoxy-desferrioxamine D , have been isolated, together with four known hydroxamates, desferrioxamine D , desferrioxamine B , desoxy-nocardamine and nocardamine , and a diketopiperazine (DKP) . The structures of - were characterized by the analysis of HRESIMS and 1D and 2D NMR data, as well as by comparison with the relevant literature.

View Article and Find Full Text PDF

A novel class of fused thiochroman derivatives has been prepared by an efficient and versatile synthetic procedure involving nucleophilic displacement of the side-chain iodo substituent in 2-deoxy-2-C-iodomethyl glucosides by thiophenolate ions, and subsequent intramolecular C-glycoside formation. A range of aromatic substituents is tolerated, and the subsequent facile selective oxidation of the sulfur to the sulfoxide or sulfone level expands the range and molecular diversity of the series of compounds. A selection of the sulfoxide and sulfone derivatives bearing lipophilic substituents on the aromatic portion were found to have antimalarial activities in the low micromolar range.

View Article and Find Full Text PDF

Here we show that a series of inhibitors, constructed from plumbagin conjugated to a phenyl thioglucoside via an alkyl chain of variable length, are bound in solution-favoured ligand conformations to a mycothiol biosynthetic enzyme MshB, a GlcNAc-Ins deacetylase. The kinetic studies of this ligand series show that MshB is more strongly inhibited as a function of increasing alkyl chain length. While docking studies yielded highest ranked conformations in which the ligands extended along the catalytic site, these conformations produced free energy values prone to large errors and which were inconsistent with experimental kinetic measurements.

View Article and Find Full Text PDF

Thioglucosides of cysteine show variable stability depending on the nature of the protecting groups on the glycosyl donor. Armed protecting groups (benzyl) lead to products that decompose readily while disarmed protecting groups (acetyl) lead to more stable products. Since this armed/disarmed effect of the protecting group on the stability of the thioglucosides is more pronounced for cysteine with an unprotected carboxylic group, the proposed mechanism is that decomposition is initiated by an intramolecular protonation of glycosyl sulfide and subsequent displacement of the sulfide by adventitious nucleophiles.

View Article and Find Full Text PDF

Two further variations of the Ferrier-type allylic rearrangements of 1,2-cyclopropanated glucose derivatives bearing an acetoxylated carbon at the 1'-position are described. In the first, treatment of the cyclopropanated sugar with a nucleophile (ROH, PhSH, azide) and Lewis acid (BF(3)·Et(2)O or Al(OTf)(3)), gives 2-C-vinyl glucosides in good yields and α-selectivities. Alternatively, treatment with a combination of Lewis acid and acetic acid leads to a novel fragmentation-rearrangement to form a 2,3-dehydro-2-formyl-C-glycoside.

View Article and Find Full Text PDF

N-Acetylglucosaminylinositol (GlcNAc-Ins)-deacetylase (MshB) and mycothiol-S-conjugate amidase (Mca), structurally related amidases present in mycobacteria and other Actinomycetes, are involved in the biosynthesis of mycothiol and in the detoxification of xenobiotics as their mycothiol-S-conjugates, respectively. With substrate analogs of GlcNAc-Ins, MshB showed a marked preference for inositol as the aglycon present in GlcNAc-Ins. The inhibition of MshB and Mca by 10 thioglycosides, 7 cyclohexyl-2-deoxy-2-C-alkylglucosides, and 4 redox cyclers was evaluated.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Five plants used in traditional medicine in the Western Cape Province of South Africa, have been investigated for anti-mycobacterial activity: Olea capensis, Tulbaghia alliacea, Dittrichia graveolens, Leysera gnaphalodes and Buddleja saligna.

Aim Of The Study: The aim was to assess antimycobacterial activity in plants used in treatment of symptoms of TB, and through activity-guided fractionation of extracts to isolate compounds or mixtures with potential as anti-TB drug leads.

Materials And Methods: Extracts and derived fractions were assayed against strains of Escherichia coli, Staphylococcus aureus, and Mycobacterium aurum A+.

View Article and Find Full Text PDF

The synthesis of a fused bicyclic thioglycoside analogue of mycothiol, (3R)-3-acetylamino-4-one-6,7-dihydro-(1',2'-dideoxy-beta-D-glucopyranoso)[2',1'-f]-1,5-thiazepane (5), is reported. Treatment of phthalimido-protected peracetylated glucosamine with N-acetyl-cysteine and boron trifluoride-etherate gave the beta-linked thioglycoside, which was deprotected and cyclized, using HOBt and EDCl to form the lactam and giving the target structure. This mycothiol mimic and its tri-O-acetate will be investigated as potential inhibitors of enzymes involved in the biosynthesis of mycothiol.

View Article and Find Full Text PDF

Four differently substituted trimers of the CPS repeating unit have been synthesised in order to investigate the dependence on oligosaccharide size, acetylation and mode of phosphorylation of glycoconjugate vaccines against Neisseria meningitidis group A. A spacer-containing starting monomer, a H-phosphonate elongating monomer and a 6-O-phosphorylated H-phosphonate cap monomer have been synthesised and coupled together to afford, after deprotection, the target trimer structures differing in their acetylation and phosphorylation substitution pattern.

View Article and Find Full Text PDF

Two new analogues of 1-D-1-O-(2-acetamido-2-deoxy-alpha-D-glucopyranosyl)-myo-inositol, a biosynthetic intermediate in the production of mycothiol in the Mycobacteria have been synthesized. Both the 2-deoxy-2-C-(2'-hydroxypropyl)-D-glucoside 5, and the 2-deoxy-2-C-(2'-oxopropyl)-D-glucoside 6, are derived from fully benzylated 1-D-1-O-(2-C-allyl-2-deoxy)-D-glucopyranosyl)-myo-inositol 20, readily assembled via a protected 2-C-allyl-2-deoxyglucosyl fluoride. Both 5 and 6 inhibit the incorporation of [3H]inositol by whole cells of Mycobacterium smegmatis into a number of metabolites which contain inositol.

View Article and Find Full Text PDF

Members of the actinomycetes produce 1D-1-O-(2-[N-acetyl-L-cysteinyl]amino-2-deoxy-alpha-D-glucopyranosyl)-myo-inositol or mycothiol 1 as principal low molecular mass thiol. Chemical synthesis of a biosynthetic precursor of mycothiol, the pseudodisaccharide 1D-1-O-(2-amino-2-deoxy-alpha-D-glucopyranosyl)-myo-inositol 13 was achieved by the following steps: (1) Enantioselective synthesis gave the glycosyl acceptors (-)-2,3,4,5,6-penta-O-acetyl-D-myo-inositol D-7 and the corresponding L-isomer L-7. (2) Condensation of D-7 and L-7 with the glycosyl donor 3,4,6-tri-O-acetyl-2-deoxy-2-(2,4-dinitrophenylamino)-alpha-D-glucopyranosylbromide afforded the corresponding alpha and beta anomeric products, which could be resolved by silica gel chromatography.

View Article and Find Full Text PDF