Publications by authors named "David W Agar"

Liquid-liquid slug flow in a microcapillary, with its improved heat and mass transfer properties and narrow residence time, plays a vital role in process intensification. Knowledge of the flow properties in microchannels along variables' controllability (e.g.

View Article and Find Full Text PDF

Applying multiphase systems in microreactors leads to an intensification of heat and mass transport. Critical aspects of the well-studied segmented slug-flow, such as bubble generation and pump control, can be automated, provided a robust sensor for the reliable determination of velocity, phase lengths, and phase ratio(s) is available. In this work, a fast and low-priced sensor is presented, based on two optical transmission sensors detecting flow characteristics noninvasively together with a microcontroller.

View Article and Find Full Text PDF

The objective of this investigation was to study the permselective behaviour of calcium alginate membranes, including the modifying effects of silica additives, which were subsequently used as microcapsule shells. Diffusion experiments and HPLC were carried out to ascertain the size-exclusion property of the membranes for a mixed molecular-weight dextran solution. Hollow microcapsules containing the enzyme dextranase were prepared using double concentric nozzles and the encapsulation performance was evaluated based on an analysis of the enzyme reactivity and stability.

View Article and Find Full Text PDF

A precise characterisation of microreactors can be achieved by determining the residence time distribution as one of the most important flow characteristics. An approach specially designed for microreactor applications was developed, which employs a tracer 'injection' using the optical activation of a caged fluorescent dye. Furthermore, the effect of the laminar flow on the determination of the residence time distribution in microreactors has been taken into account during the measurements and their interpretation to fulfill the requirements of the so-called 'mixing-cup-problem' on the microscale.

View Article and Find Full Text PDF