Publications by authors named "David Vojna"

We report the first-ever, to the best of our knowledge, demonstration of the optical isolation of a kilowatt average power pulsed laser. A Faraday isolator capable of stable protection of the laser amplifier chain delivering 100 J nanosecond laser pulses at the repetition rate of 10 Hz has been developed and successfully tested. The isolator provided an isolation ratio of 30.

View Article and Find Full Text PDF

We investigated the use of crystalline coatings as the highly reflective coating of an Yb:YAG thin disk directly bonded onto a silicon carbide heatsink. Compared to commonly used ion-beam-sputtered coatings, it possesses lower optical losses and higher thermal conductivity, resulting in better heat management and laser outputs. We pumped the disk up to 1.

View Article and Find Full Text PDF

The relatively narrow choice of magneto-active materials that could be used to construct Faraday devices (such as rotators or isolators) for the mid-infrared wavelengths arguably represents a pressing issue that is currently limiting the development of the mid-infrared lasers. Furthermore, the knowledge of the magneto-optical properties of the yet-reported mid-infrared magneto-active materials is usually restricted to a single wavelength only. To address this issue, we have dedicated this work to a comprehensive investigation of the magneto-optical properties of both the emerging (Dy2O3 ceramics and CeF3 crystal) and established (Y3Fe5O12 crystal) mid-infrared magneto-active materials.

View Article and Find Full Text PDF

Potassium terbium fluoride (KTF) crystal is a promising magneto-active material for creating multi-kilowatt average-power Faraday isolators operating at the visible and near-infrared wavelengths. Nevertheless, the key material's parameter needed for the design of any Faraday isolator-the Verdet constant, has not been comprehensively investigated yet. In this Letter, we report on measurement of the Verdet constant of the KTF crystal for wavelengths between 600 and 1500 nm and for temperatures ranging from 15 to 295 K.

View Article and Find Full Text PDF