Publications by authors named "David Vela-Corcia"

In a previously published study, the authors devised a molecular topology QSAR (quantitative structure-activity relationship) approach to detect novel fungicides acting as inhibitors of chitin deacetylase (CDA). Several of the chosen compounds exhibited noteworthy activity. Due to the close relationship between chitin-related proteins present in fungi and other chitin-containing plant-parasitic species, the authors decided to test these molecules against nematodes, based on their negative impact on agriculture.

View Article and Find Full Text PDF

Bacterial communities are in a continuous adaptive and evolutionary race for survival. In this work we expand our knowledge on the chemical interplay and specific mutations that modulate the transition from antagonism to co-existence between two plant-beneficial bacteria, Pseudomonas chlororaphis PCL1606 and Bacillus amyloliquefaciens FZB42. We reveal that the bacteriostatic activity of bacillaene produced by Bacillus relies on an interaction with the protein elongation factor FusA of P.

View Article and Find Full Text PDF

Glucosinolates accumulate mainly in cruciferous plants and their hydrolysis-derived products play important roles in plant resistance against pathogens. The pathogen Botrytis cinerea has variable sensitivity to glucosinolates, but the mechanisms by which it responds to them are mostly unknown. Exposure of B.

View Article and Find Full Text PDF

Many types of yeast have been studied in the last few years as potential biocontrol agents against different phytopathogenic fungi. Their ability to control plant diseases is mainly through combined modes of action. Among them, antibiosis, competition for nutrients and niches, induction of systemic resistance in plants and mycoparasitism have been the most studied.

View Article and Find Full Text PDF

Methyl benzimidazole carbamate (MBC) fungicides are fungicidal compounds that exert their biological activities by preventing cell division through the inhibition of tubulin polymerization, which is the major component of microtubules. Several mutations in the β-tubulin gene contribute to MBC resistance, the most common and significant of which occur at residues 198 and 200. Despite nearly 50 years of agricultural use, the binding site of MBCs and the precise mechanism by which those mutations affect fungicide efficacy have not been determined.

View Article and Find Full Text PDF

Betalains are tyrosine-derived red-violet and yellow plant pigments known for their antioxidant activity, health-promoting properties, and wide use as food colorants and dietary supplements. By coexpressing three genes of the recently elucidated betalain biosynthetic pathway, we demonstrate the heterologous production of these pigments in a variety of plants, including three major food crops: tomato, potato, and eggplant, and the economically important ornamental petunia. Combinatorial expression of betalain-related genes also allowed the engineering of tobacco plants and cell cultures to produce a palette of unique colors.

View Article and Find Full Text PDF

The cucurbit powdery mildew fungus Podosphaera xanthii is a major limiting factor for cucurbit production worldwide. Despite the fungus's agronomic and economic importance, very little is known about fundamental aspects of P. xanthii biology, such as obligate biotrophy or pathogenesis.

View Article and Find Full Text PDF

The sexual stage of Podosphaera xanthii is rarely found worldwide. However, chasmothecia are frequently recorded in northern Italy, suggesting the presence of an actively mating population. With the aim of investigating the genetic structure of the Italian population with respect to populations from other countries, genetic diversity analysis was performed both on 92 isolates from European and American countries by multilocus sequence typing (MLST) and on 59 isolates by amplified fragment length polymorphism (AFLP) methods.

View Article and Find Full Text PDF

Background: Powdery mildew diseases are a major phytosanitary issue causing important yield and economic losses in agronomic, horticultural and ornamental crops. Powdery mildew fungi are obligate biotrophic parasites unable to grow on culture media, a fact that has significantly limited their genetic manipulation. In this work, we report a protocol based on the electroporation of fungal conidia, for the transient transformation of Podosphaera fusca (synonym Podosphaera xanthii), the main causal agent of cucurbit powdery mildew.

View Article and Find Full Text PDF

Background: Cucurbit powdery mildew caused by Podosphaera xanthii limits crop production in Spain, where disease control is largely dependent on fungicides. In previous studies, high levels of resistance to QoI and DMI fungicides were documented in south-central Spain. The aim of this study was to investigate the sensitivity of P.

View Article and Find Full Text PDF

The powdery mildew fungus Podosphaera fusca (synonym Podosphaera xanthii) is the main causal agent of cucurbit powdery mildew and one of the most important limiting factors for cucurbit production worldwide. Despite the fungus' economic importance, very little is known about the physiological and molecular processes involved in P. fusca biology and pathogenesis.

View Article and Find Full Text PDF