Publications by authors named "David Vega-Avelaira"

Shikonin is an ointment produced from Lithospermun erythrorhizon which has been used in traditional medicine both in Europe and Asia for wound healing and is associated with anti-inflammatory properties. The goal of this work is to assess the analgesic properties of Shikonin in the CFA-induced inflammation model of pain. Rats were subjected to inflammation of the hind paw by CFA injection with a preventive injection of Shikonin and compared to either a control group or to a CFA-inflamed group with the vehicle drug solution.

View Article and Find Full Text PDF

Hippocampal synaptic plasticity disruption by amyloid-β (Aβ) peptides + thought to be responsible for learning and memory impairments in Alzheimer's disease (AD) early stage. Failures in neuronal excitability maintenance seems to be an underlying mechanism. G-protein-gated inwardly rectifying potassium (GirK) channels control neural excitability by hyperpolarization in response to many G-protein-coupled receptors activation.

View Article and Find Full Text PDF

Background: Peripheral nerve injuries can trigger neuropathic pain in adults but cause little or no pain when they are sustained in infancy or early childhood. This is confirmed in rodent models where neonatal nerve injury causes no pain behaviour. However, delayed pain can arise in man some considerable time after nerve damage and to examine this following early life nerve injury we have carried out a longer term follow up of rat pain behaviour into adolescence and adulthood.

View Article and Find Full Text PDF

We have previously shown that the balance of electrically evoked descending brainstem control of spinal nociceptive reflexes undergoes a switch from excitation to inhibition in preadolescent rats. Here we show that the same developmental switch occurs when μ-opioid receptor agonists are microinjected into the rostroventral medulla (RVM). Microinjections of the μ-opioid receptor agonist [D-Ala(2), N-MePhe(4), Gly-ol]-enkephalin (DAMGO) into the RVM of lightly anaesthetised adult rats produced a dose-dependent decrease in mechanical nociceptive hindlimb reflex electromyographic activity.

View Article and Find Full Text PDF

Background: Neuropathic pain is an apparently spontaneous experience triggered by abnormal physiology of the peripheral or central nervous system, which evolves with time. Neuropathic pain arising from peripheral nerve injury is characterized by a combination of spontaneous pain, hyperalgesia and allodynia. There is no evidence of this type of pain in human infants or rat pups; brachial plexus avulsion, which causes intense neuropathic pain in adults, is not painful when the injury is sustained at birth.

View Article and Find Full Text PDF

The sensitization of spinal dorsal horn neurones leads to prolonged enhancement of pain behaviour and can be evoked by intense C-fibre stimulation, tissue inflammation and peripheral nerve injury. Activation of central immune cells plays a key role in establishing pain hypersensitivity but the exact nature of the afferent input that triggers the activation of microglia and other glial cells within the CNS, remains unclear. Here intense but non-damaging, electrical stimulation of intact adult rat C-fibres for 5 min at 10 Hz induced central sensitization characterized by significant decreases in mechanical withdrawal thresholds 3, 24 and 48 h later.

View Article and Find Full Text PDF

Neuropathic pain, arising from nerve injury or secondary to other diseases, occurs in young children as well as adults but little is known about its postnatal development. Neonatal rat pups do not display mechanical allodynia following nerve injury and young rats recover faster from spinal nerve damage. Since both spinal microglia and astrocytes are strongly implicated in the maintenance of persistent pain, we hypothesized that the magnitude and time course of spinal cord glial activation following nerve injury change throughout postnatal development.

View Article and Find Full Text PDF

Neuropathic pain behaviour is not observed in neonatal rats and tactile allodynia does not develop in the spared nerve injury (SNI) model until rats are 4 weeks of age at the time of surgery. Since activated spinal microglia are known to play a key role in neuropathic pain, we have investigated whether the microglial response to nerve injury in young rats differs from that in adults. Here we show that dorsal horn microglial activation, visualised with IBA-1 immunostaining, is significantly less in postnatal day (P) 10 rat pups than in adults, 7 days after SNI.

View Article and Find Full Text PDF

Complex molecular changes associated with early stage human heart disease are poorly understood and prevent the development of effective treatments of human cardiac disease. Relatively minor structural changes in early disease may accompany some conditions such as arrhythmias. Our objective was to determine if significant proteomic changes occur in heart tissues in the absence of structural pathology.

View Article and Find Full Text PDF