The adenosine A2B receptor (A2BAR) is a member of a family of G-protein coupled receptors (GPCRs), which has a low affinity for adenosine and is now implicated in several pathophysiological conditions. We have demonstrated the beneficial effects of A2BAR activation in enhancing recovery after acute liver injury induced by an acetaminophen (APAP) overdose. While receptor trafficking within the cell is recognized to play a role in GPCR signaling, its role in the mediation of A2BAR effects in the context of APAP-induced liver injury is not well understood.
View Article and Find Full Text PDFFifty percent of all acute liver failure (ALF) cases in the United States are due to acetaminophen (APAP) overdose. Assessment of canonical features of liver injury, such as plasma alanine aminotransferase activities are poor predictors of acute liver failure (ALF), suggesting the involvement of additional mechanisms independent of hepatocyte death. Previous work demonstrated a severe overdose of APAP results in impaired regeneration, the induction of senescence by p21, and increased mortality.
View Article and Find Full Text PDFExpert Rev Clin Pharmacol
January 2024
Introduction: Acetaminophen (APAP) overdose is the leading cause of drug-induced liver injury and can cause a rapid progression to acute liver failure (ALF). Therefore, the identification of prognostic biomarkers to determine which patients will require a liver transplant is critical for APAP-induced ALF.
Areas Covered: We begin by relating the mechanistic investigations in mouse models of APAP hepatotoxicity to the human APAP overdose pathophysiology.
Background And Aims: Patients with acetaminophen-induced acute liver failure are more likely to die while on the liver transplant waiting list than those with other causes of acute liver failure. Therefore, there is an urgent need for prognostic biomarkers that can predict the need for liver transplantation early after an acetaminophen overdose.
Approach And Results: We evaluated the prognostic potential of plasma chemokine C-X-C motif ligand 14 (CXCL14) concentrations in patients with acetaminophen (APAP) overdose (n=50) and found that CXCL14 is significantly higher in nonsurviving patients compared to survivors with acute liver failure ( p < 0.
Acetaminophen (APAP) overdose is the leading cause of acute liver failure in western countries. APAP can cause extensive hepatocellular necrosis, which triggers an inflammatory response involving neutrophil and monocyte recruitment. Particularly the role of neutrophils in the injury mechanism of APAP hepatotoxicity has been highly controversial.
View Article and Find Full Text PDFAcetaminophen (APAP) is a widely used pain reliever that can cause liver injury or liver failure in response to an overdose. Understanding the mechanisms of APAP-induced cell death is critical for identifying new therapeutic targets. In this respect it was hypothesized that hepatocytes die by oncotic necrosis, apoptosis, necroptosis, ferroptosis and more recently pyroptosis.
View Article and Find Full Text PDFPeripheral neuropathy (PN), a debilitating complication of diabetes, is associated with obesity and the metabolic syndrome in nondiabetic individuals. Evidence indicates that a high fat diet can induce signs of diabetic peripheral PN in mice but the pathogenesis of high fat diet-induced PN remains unknown. : Determine if neuronal inflammation is associated with the development of mechanical hypersensitivity and nerve fiber changes in high fat fed mice.
View Article and Find Full Text PDFThe persistence of hepatotoxicity induced by N-acetyl-para-aminophenol (Acetaminophen or Paracetamol, abbreviated as APAP) as the most common cause of acute liver failure in the United States, despite the availability of N-acetylcysteine, illustrates the clinical relevance of additional therapeutic approaches. While human mesenchymal stem cells (MSCs) have shown protection in mouse models of liver injury, the MSCs used are generally not cleared for human use and it is unclear whether these effects are due to xenotransplantation. Here we evaluated GMP manufactured clinical grade human Wharton's Jelly mesenchymal stem cells (WJMSCs), which are currently being investigated in human clinical trials, in a mouse model of APAP hepatotoxicity in comparison to human dermal fibroblasts (HDFs) to address these issues.
View Article and Find Full Text PDFAcetaminophen (APAP) overdose is the main cause of acute liver failure in Western countries. The mechanism of APAP hepatotoxicity is associated with centrilobular necrosis which initiates infiltration of neutrophils, monocytes, and other leukocytes to the area of necrosis. Although it has been recognized that this infiltration of immune cells plays a critical role in promoting liver repair, mechanism of immune cell clearance that is important for resolution of inflammation and the return to normal homeostasis are not well characterized.
View Article and Find Full Text PDFThe aim of this study was to determine the effect of voluntary wheel running (VWR) during weight-loss on hepatic lipid and inflammatory biomarkers using a murine model. To induce obesity, male C57Bl/6 mice were fed a 60% high-fat diet (HF) for 10 weeks. At 10 weeks, weight-loss was promoted by randomizing HF-fed mice to a normal diet (ND) either with (WL + VWR) or without (WL) access to running wheels for 8 weeks.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
April 2022
Background & Aims: The liver has a unique capacity to regenerate after injury in a highly orchestrated and regulated manner. Here, we report that O-GlcNAcylation, an intracellular post-translational modification regulated by 2 enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), is a critical termination signal for liver regeneration following partial hepatectomy (PHX).
Methods: We studied liver regeneration after PHX on hepatocyte specific OGT and OGA knockout mice (OGT-KO and OGA-KO), which caused a significant decrease (OGT-KO) and increase (OGA-KO) in hepatic O-GlcNAcylation, respectively.
Acetaminophen (APAP) is a widely used analgesic and antipyretic drug, which is safe at therapeutic doses but can cause severe liver injury and even liver failure after overdoses. The mouse model of APAP hepatotoxicity recapitulates closely the human pathophysiology. As a result, this clinically relevant model is frequently used to study mechanisms of drug-induced liver injury and even more so to test potential therapeutic interventions.
View Article and Find Full Text PDFSomatostatin receptor subtype 4 (SSTR4) is expressed in BV2 microglia, suggesting that SSTR4 agonists may impact microglia function. This study assessed the high-affinity SSTR4 agonist SM-I-26 (SMI) (0 nM, 10 nM, 1000 nM) against lipopolysaccharide (LPS)-induced inflammation (0, 10 or 100 ng/ml) over 6 or 24 h in BV2 microglia. Cell viability, nitrite output and mRNA expression changes of genes associated with our target (Sstr4), inflammation (Tnf-α, Il-6, Il-1β, inos), anti-inflammatory and anti-oxidant actions (Il-10, Catalase), and mediators of Aβ binding/phagocytosis (Msr1, Cd33, Trem1, Trem2) were measured.
View Article and Find Full Text PDFAcetaminophen (APAP) is a widely used analgesic, but also a main cause of acute liver injury in the United States and many western countries. APAP hepatotoxicity is associated with a sterile inflammatory response as shown by the infiltration of neutrophils and monocytes. While the contribution of the immune cells to promote liver repair have been demonstrated, the direct interactions between macrophages or neutrophils with hepatocytes to help facilitate hepatocyte proliferation and tissue repair remain unclear.
View Article and Find Full Text PDFMitochondria have been studied for decades from the standpoint of metabolism and ATP generation. However, in recent years mitochondrial dynamics and its influence on bioenergetics and cellular homeostasis is also being appreciated. Mitochondria undergo regular cycles of fusion and fission regulated by various cues including cellular energy requirements and pathophysiological stimuli, and the network of critical proteins and membrane lipids involved in mitochondrial dynamics is being revealed.
View Article and Find Full Text PDFAdv Clin Chem
August 2021
Extracellular vesicles (EV) are defined as nanosized particles, with a lipid bilayer, that are unable to replicate. There has been an exponential increase of research investigating these particles in a wide array of diseases and deleterious states (inflammation, oxidative stress, drug-induced liver injury) in large part due to increasing recognition of the functional capacity of EVs. Cells can package lipids, proteins, miRNAs, DNA, and RNA into EVs and send these discrete packages of molecular information to distant, recipient cells to alter the physiological state of that cell.
View Article and Find Full Text PDFAn acetaminophen (APAP) overdose is the most common cause of acute liver failure in the United States. A hallmark characteristic of APAP hepatotoxicity is centrilobular necrosis. General, innate mechanisms such as lower amounts of GSH and higher cytochrome P450 2e1 expression in pericentral (PC) hepatocytes are known to contribute to the differences in susceptibility to cell injury between periportal (PP) hepatocytes and PC hepatocytes.
View Article and Find Full Text PDFMitochondrial morphology plays a critical role in regulating mitochondrial and cellular function. It is well established that oxidative stress and mitochondrial injury are central to acetaminophen (APAP) hepatotoxicity. However, the role of mitochondrial dynamics, namely the remodeling of mitochondrial morphology through fusion and fission, has largely gone unexplored.
View Article and Find Full Text PDFAcetaminophen (APAP) overdose is the most common cause of acute liver failure in the United States and formation of APAP-protein adducts, mitochondrial oxidant stress and activation of the mitogen activated protein (MAP) kinase c-jun N-terminal kinase (JNK) are critical for APAP-induced cell death. However, direct evidence linking these mechanistic features are lacking and were investigated by examining the early temporal course of these changes in mice after 300 mg/kg APAP. Protein adducts were detectable in the liver (0.
View Article and Find Full Text PDFExpert Rev Gastroenterol Hepatol
April 2021
: Liver injury induced by drugs is a serious clinical problem. Many circulating biomarkers for identifying and predicting drug-induced liver injury (DILI) have been proposed.: Biomarkers are mainly predicated on the mechanistic understanding of the underlying DILI, often in the context of acetaminophen overdose.
View Article and Find Full Text PDFLiver injury and acute liver failure caused by acetaminophen (APAP, N-acetyl-p-aminophenol, paracetamol) overdose is a significant clinical problem in most western countries. The only clinically approved antidote is N-acetylcysteine (NAC), which promotes the recovery of hepatic GSH. If administered during the metabolism phase, GSH scavenges the reactive metabolite N-acetyl-p-benzoquinone imine.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive neurodegenerative disorder resulting in memory and cognitive impairment. The use of somatostatin receptor subtype-4 (SSTR) agonists have been proposed for AD treatment. This study investigated the effects of selective SSTR agonist NNC 26-9100 on mRNA expression of key genes associated with AD pathology (microglia mediators of Aβ phagocytosis, amyloid-beta (Aβ)-degrading enzymes, anti-oxidant enzymes and pro-inflammatory cytokines) in 3xTg-AD mice.
View Article and Find Full Text PDFBackground: Diet-mediated alterations of critical brain nutrient transporters, major facilitator super family domain-containing 2a (Mfsd2a) and glucose transporter 1 (Glut1), have wide reaching implications in brain health and disease.
Objective: The aim of the study was to examine the impact of long-term low- and high-fat diets with lard or fish oil on critical brain nutrient transporters, Mfsd2a and Glut1.
Methods: Eight-week-old male C57BL/6 mice were fed 1 of the following 4 diets for 32 wk: 10% of kcal from lard, 10% of kcal from fish oil, 41% of kcal from lard, or 41% of kcal from fish oil.