Lithium phosphorus oxynitride (LiPON) is a crucial electrolyte for all-solid-state thin-film batteries due to its sufficient ionic conductivity. Understanding the mechanical behavior of LiPON films is crucial for further technological development. Previous studies noted unexpected ductility and strain recovery in amorphous LiPON during sharp-ended tip indentations revealing pile-up formation and densification as the main deformation mechanisms.
View Article and Find Full Text PDFCompression experiments on micron-scale specimens and acoustic emission (AE) measurements on bulk samples revealed that the dislocation motion resembles a stick-slip process - a series of unpredictable local strain bursts with a scale-free size distribution. Here we present a unique experimental set-up, which detects weak AE waves of dislocation slip during the compression of Zn micropillars. Profound correlation is observed between the energies of deformation events and the emitted AE signals that, as we conclude, are induced by the collective dissipative motion of dislocations.
View Article and Find Full Text PDFAluminum matrix (Al99.5) syntactic foam containing expanded perlite particles was produced using the pressure infiltration technique. The dominant deformation mechanisms during compression of this foam were determined by sequential k-means analysis of the acoustic emission data.
View Article and Find Full Text PDF