Quantitative evaluation of the microstructural state of a specimen can be deduced from knowledge of the sample's absolute acoustic nonlinearity parameter, β, making the measurement of β a powerful tool in the NDE toolbox. However, the various methods used in the past to measure β each suffer from significant limitations. Piezoelectric contact transducers are sensitive to nonlinear signals, cheap, and simple to use, but they are hindered by the variability of the interfacial contact between transducer and specimen surface.
View Article and Find Full Text PDFThis research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for correcting measurements made with air-coupled and contact piezoelectric receivers for the aforementioned effects is provided based on analytical models and experimental considerations. A method for extracting the nonlinearity parameter β11 is proposed based on a nonlinear least squares curve-fitting algorithm that is tailored for Rayleigh wave measurements.
View Article and Find Full Text PDF