Yttria stabilized zirconia (YSZ) is an important oxide ion conductor used in solid oxide fuel cells, oxygen sensing devices, and for oxygen separation. Doping pure zirconia (ZrO) with yttria (YO) stabilizes the cubic structure against phonon induced distortions and this facilitates high oxide ion conductivity. The local atomic structure of the dopant is, however, not fully understood.
View Article and Find Full Text PDFControlled synthesis of nanomaterials is one of the grand challenges facing materials scientists. In particular, how tunnel-based nanomaterials aggregate during synthesis while maintaining their well-aligned tunneled structure is not fully understood. Here, we describe the atomistic mechanism of oriented attachment (OA) during solution synthesis of tunneled α-MnO2 nanowires based on a combination of in situ liquid cell transmission electron microscopy (TEM), aberration-corrected scanning TEM with subangstrom spatial resolution, and first-principles calculations.
View Article and Find Full Text PDFMnO2 is a technologically important material for energy storage and catalysis. Recent investigations have demonstrated the success of nanostructuring for improving the performance of rutile MnO2 in Li-ion batteries and supercapacitors and as a catalyst. Motivated by this we have investigated the stability and electronic structure of rutile (β-)MnO2 surfaces using density functional theory.
View Article and Find Full Text PDFLithium iron fluoride materials have attracted recent interest as cathode materials for lithium ion batteries. The electrochemical properties of the high energy density Li(x)FeF6 (x = 2, 3, 4) materials have been evaluated using a combination of potential-based and DFT computational methods. Voltages of 6.
View Article and Find Full Text PDFWe show that the quasi-skutterudite superconductor Sr(3)Ir(4)Sn(13) undergoes a structural transition from a simple cubic parent structure, the I phase, to a superlattice variant, the I' phase, which has a lattice parameter twice that of the high temperature phase. We argue that the superlattice distortion is associated with a charge density wave transition of the conduction electron system and demonstrate that the superlattice transition temperature T(*) can be suppressed to zero by combining chemical and physical pressure. This enables the first comprehensive investigation of a superlattice quantum phase transition and its interplay with superconductivity in a cubic charge density wave system.
View Article and Find Full Text PDF