Publications by authors named "David Tilman"

Agriculture's global environmental impacts are widely expected to continue expanding, driven by population and economic growth and dietary changes. This Review highlights climate change as an additional amplifier of agriculture's environmental impacts, by reducing agricultural productivity, reducing the efficacy of agrochemicals, increasing soil erosion, accelerating the growth and expanding the range of crop diseases and pests, and increasing land clearing. We identify multiple pathways through which climate change intensifies agricultural greenhouse gas emissions, creating a potentially powerful climate change-reinforcing feedback loop.

View Article and Find Full Text PDF

Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e.

View Article and Find Full Text PDF

Two of the major factors that control the composition of herbaceous plant communities are competition for limiting soil resources and herbivory. We present results from a 14-year full factorial experiment in a tallgrass prairie ecosystem that crossed nitrogen (N) addition with fencing to exclude white-tailed deer, Odocoileus virginianus, from half the plots. Deer presence was associated with only modest decreases in aboveground plant biomass (14% decrease; -45 ± 19 g m) with no interaction with N addition.

View Article and Find Full Text PDF
Article Synopsis
  • * By analyzing nitrogen inputs and losses, the study found that the costs to society from poor nitrogen management are six times higher than farmers' profits, primarily due to ammonia emissions from fertilizers and manure.
  • * Implementing better nitrogen management strategies can reduce societal costs by 85% (around $21.6 billion annually) while improving farmer profits, through measures like optimizing fertilizer types, reducing fertilization rates, and stopping maize production on less productive land.
View Article and Find Full Text PDF

To determine which types of plant traits might better explain ecosystem functioning and plant evolutionary histories, we compiled 42 traits for each of 15 perennial species in a biodiversity experiment. We used every possible combination of three traits to cluster species. Across these 11,480 combinations, clusters generated using tissue %Ca, %N and %K best mapped onto phylogeny.

View Article and Find Full Text PDF

Mounting evidence suggests that plant-soil feedbacks (PSF) may determine plant community structure. However, we still have a poor understanding of how predictions from short-term PSF experiments compare with outcomes of long-term field experiments involving competing plants. We conducted a reciprocal greenhouse experiment to examine how the growth of prairie grass species depended on the soil communities cultured by conspecific or heterospecific plant species in the field.

View Article and Find Full Text PDF

Understanding and communicating the environmental impacts of food products is key to enabling transitions to environmentally sustainable food systems [El Bilali and Allahyari, Inf. Process. Agric.

View Article and Find Full Text PDF

Modeling fire spread as an infection process is intuitive: An ignition lights a patch of fuel, which infects its neighbor, and so on. Infection models produce nonlinear thresholds, whereby fire spreads only when fuel connectivity and infection probability are sufficiently high. These thresholds are fundamental both to managing fire and to theoretical models of fire spread, whereas applied fire models more often apply quasi-empirical approaches.

View Article and Find Full Text PDF

Protected areas (PAs) are a cornerstone of global conservation and central to international plans to minimize global extinctions. During the coming century, global ecosystem destruction and fragmentation associated with increased human population and economic activity could make the long-term survival of most terrestrial vertebrates even more dependent on PAs. However, the capacity of the current global PA network to sustain species for the long term is unknown.

View Article and Find Full Text PDF

Metacommunity theory predicts that the composition and diversity of a site depend on its characteristics and those of its neighborhood. Dispersal between plots in a field experiment could link responses observed in a focal plot to both its treatment and those of its neighbors. However, the diversity, composition, and treatments of neighboring plots are rarely included in analyses of experimental treatments.

View Article and Find Full Text PDF

Many species may face multiple distinct and persistent drivers of extinction risk, yet theoretical and empirical studies tend to focus on the single largest driver. This means that existing approaches potentially underestimate and mischaracterize future risks to biodiversity. We synthesized existing knowledge on how multiple drivers of extinction can interact to influence a species' overall extinction probability in a probabilistic model of extinction risk that incorporated the impacts of multiple drivers of extinction risk, their interactions, and their accumulative effects through time.

View Article and Find Full Text PDF

Fertile soils have been an essential resource for humanity for 10,000 y, but the ecological mechanisms involved in the creation and restoration of fertile soils, and especially the role of plant diversity, are poorly understood. Here we use results of a long-term, unfertilized plant biodiversity experiment to determine whether biodiversity, especially plant functional biodiversity, impacted the regeneration of fertility on a degraded sandy soil. After 23 y, plots containing 16 perennial grassland plant species had, relative to monocultures of these same species, ∼30 to 90% greater increases in soil nitrogen, potassium, calcium, magnesium, cation exchange capacity, and carbon and had ∼150 to 370% greater amounts of N, K, Ca, and Mg in plant biomass.

View Article and Find Full Text PDF

A confluence of discoveries in ecology and agriculture suggests that biodiversity can help address the sustainability problems facing modern intensive agriculture. Here we explore several questions related to this possibility. Can increases in national crop diversity help increase the stability and security of national food systems? Can practices based on greater crop biodiversity produce yields that compete with those obtained through the long-standing, high-input monoculture model? What are the appropriate levels and combinations of crops to be used? We highlight recent research that suggests it is time to begin unlocking the agricultural potential of biodiversity - from the level of crop genetic diversity to species diversity - and to do so on spatial scales from individual fields to nations.

View Article and Find Full Text PDF

Agriculture is a major contributor to air pollution, the largest environmental risk factor for mortality in the United States and worldwide. It is largely unknown, however, how individual foods or entire diets affect human health via poor air quality. We show how food production negatively impacts human health by increasing atmospheric fine particulate matter (PM), and we identify ways to reduce these negative impacts of agriculture.

View Article and Find Full Text PDF

Our planet is facing significant changes of biodiversity across spatial scales. Although the negative effects of local biodiversity (α diversity) loss on ecosystem stability are well documented, the consequences of biodiversity changes at larger spatial scales, in particular biotic homogenization, that is, reduced species turnover across space (β diversity), remain poorly known. Using data from 39 grassland biodiversity experiments, we examine the effects of β diversity on the stability of simulated landscapes while controlling for potentially confounding biotic and abiotic factors.

View Article and Find Full Text PDF

The Paris Agreement's goal of limiting the increase in global temperature to 1.5° or 2°C above preindustrial levels requires rapid reductions in greenhouse gas emissions. Although reducing emissions from fossil fuels is essential for meeting this goal, other sources of emissions may also preclude its attainment.

View Article and Find Full Text PDF

Understanding how global change drivers (GCDs) affect aboveground net primary production (ANPP) through time is essential to predicting the reliability and maintenance of ecosystem function and services in the future. While GCDs, such as drought, warming and elevated nutrients, are known to affect mean ANPP, less is known about how they affect inter-annual variability in ANPP. We examined 27 global change experiments located in 11 different herbaceous ecosystems that varied in both abiotic and biotic conditions, to investigate changes in the mean and temporal variability of ANPP (measured as the coefficient of variation) in response to different GCD manipulations, including resource additions, warming, and irrigation.

View Article and Find Full Text PDF

Human disturbances alter the functioning and biodiversity of many ecosystems. These ecosystems may return to their pre-disturbance state after disturbance ceases; however, humans have altered the environment in ways that may change the rate or direction of this recovery. For example, human activities have increased supplies of biologically limiting nutrients, such as nitrogen (N) and phosphorus (P), which can reduce grassland diversity and increase productivity.

View Article and Find Full Text PDF

In most plant communities, the net effect of nitrogen enrichment is an increase in plant productivity. However, nitrogen enrichment also has been shown to decrease species richness and to acidify soils, each of which may diminish the long-term impact of nutrient enrichment on productivity. Here we use a long-term (20 year) grassland plant diversity by nitrogen enrichment experiment in Minnesota, United States (a subexperiment within the BioCON experiment) to quantify the net impacts of nitrogen enrichment on productivity, including its potential indirect effects on productivity via changes in species richness and soil pH over an experimental diversity gradient.

View Article and Find Full Text PDF

A large body of research shows that biodiversity loss can reduce ecosystem functioning. However, much of the evidence for this relationship is drawn from biodiversity-ecosystem functioning experiments in which biodiversity loss is simulated by randomly assembling communities of varying species diversity, and ecosystem functions are measured. This random assembly has led some ecologists to question the relevance of biodiversity experiments to real-world ecosystems, where community assembly or disassembly may be non-random and influenced by external drivers, such as climate, soil conditions or land use.

View Article and Find Full Text PDF

Abiotic environmental change, local species extinctions and colonization of new species often co-occur. Whether species colonization is driven by changes in abiotic conditions or reduced biotic resistance will affect community functional composition and ecosystem management. We use a grassland experiment to disentangle effects of climate warming and community diversity on plant species colonization.

View Article and Find Full Text PDF