Accurate prediction of drug-drug interactions (DDI) from in vitro data is important, as it provides insights on clinical DDI risk and study design. Historically, the lower limit of plasma fraction unbound (f) is set at 1% for DDI prediction of highly bound compounds by the regulatory agencies due to the uncertainty of the f measurements. This leads to high false positive DDI predictions for highly bound compounds.
View Article and Find Full Text PDFBackground And Objective: Physiologically based pharmacokinetic (PBPK) models are valuable for translating in vitro absorption, distribution, metabolism, and excretion (ADME) data to predict clinical pharmacokinetics, and can enable discovery and early clinical stages of pharmaceutical research. However, in predicting pharmacokinetics of organic anion transporting polypeptide (OATP) 1B substrates based on in vitro transport and metabolism data, PBPK models typically require additional empirical in vitro-to-in vivo scaling factors (ESFs) in order to accurately recapitulate observed clinical profiles. As model simulation is very sensitive to ESFs, a critical evaluation of ESF estimation is prudent.
View Article and Find Full Text PDFVenous thrombosis (VT) is a common vascular disease associated with reduced survival and a high recurrence rate. Previous studies have shown that the accumulation of platelets and neutrophils at sites of endothelial cell activation is a primary event in VT, but a role for platelet αIIbβ3 in the initiation of venous thrombosis has not been established. This task has been complicated by the increased bleeding linked to partial agonism of current αIIbβ3 inhibitory drugs such as tirofiban (Aggrastat ).
View Article and Find Full Text PDFHepatocytes are one of the most physiologically relevant in vitro liver systems for human translation of clearance and drug-drug interactions (DDI). However, the cell membranes of hepatocytes can limit the entry of certain compounds into the cells for metabolism and DDI. Passive permeability through hepatocytes can be different in vitro and in vivo, which complicates the human translation.
View Article and Find Full Text PDFPF-06835919, a ketohexokinase inhibitor, presented as an inducer of cytochrome P450 3A4 (CYP3A4) in vitro (human primary hepatocytes), and static mechanistic modeling exercises predicted significant induction in vivo (oral midazolam area under the plasma concentration-time curve [AUC] ratio [AUCR] = 0.23-0.79).
View Article and Find Full Text PDFA crucial step in lead selection during drug development is accurate estimation and optimization of hepatic clearance using in vitro methods. However, current methods are limited by factors such as lack of physiological relevance, short culture/incubation times that are not consistent with drug exposure patterns in patients, use of drug absorbing materials, and evaporation during long-term incubation. To address these technological needs, we developed a novel milli-fluidic human liver tissue chip (LTC) that was designed with continuous media recirculation and optimized for hepatic cultures using human primary hepatocytes.
View Article and Find Full Text PDFAccurate prediction of human pharmacokinetics (PK) remains one of the key objectives of drug metabolism and PK (DMPK) scientists in drug discovery projects. This is typically performed by using in vitro-in vivo extrapolation (IVIVE) based on mechanistic PK models. In recent years, machine learning (ML), with its ability to harness patterns from previous outcomes to predict future events, has gained increased popularity in application to absorption, distribution, metabolism, and excretion (ADME) sciences.
View Article and Find Full Text PDFIn vitro-in vivo extrapolation ((IVIVE) and empirical scaling factors (SF) of human intrinsic clearance (CL) were developed using one of the largest dataset of 455 compounds with data from human liver microsomes (HLM) and human hepatocytes (HHEP). For extended clearance classification system (ECCS) class 2/4 compounds, linear SFs (SF) are approximately 1, suggesting enzyme activities in HLM and HHEP are similar to those in vivo under physiological conditions. For ECCS class 1A/1B compounds, a unified set of SFs was developed for CL.
View Article and Find Full Text PDFCurrently, regulatory guidelines recommend using 0.01 as the lower limit of plasma fraction unbound (f) for prediction of drug-drug interactions (DDI) to err on the conservative side. One way to increase experimental f of highly bound compounds is to dilute the plasma.
View Article and Find Full Text PDFBackground: Tafamidis inhibits progression of transthyretin (TTR) amyloid cardiomyopathy (ATTR-CM) by binding TTR tetramer and inhibiting dissociation to monomers capable of denaturation and deposition in cardiac tissue. While the phase 3 ATTR-ACT trial demonstrated the efficacy of tafamidis, the degree to which the approved dose captures the full potential of the mechanism has yet to be assessed.
Methods: We developed a model of dynamic TTR concentrations in plasma to relate TTR occupancy by tafamidis to TTR stabilisation.
Accurate prediction of human clearance (CL) and volume of distribution at steady state (V) for small molecule drug candidates is an essential component of assessing likely efficacious dose and clinical safety margins. In 2021, the IQ Consortium Human PK Prediction Working Group undertook a survey of IQ member companies to understand the current PK prediction methods being used to estimate these parameters across the pharmaceutical industry. The survey revealed a heterogeneity in approaches being used across the industry (e.
View Article and Find Full Text PDFPeptide agonists of the glucagon-like peptide-1 receptor (GLP-1R) have revolutionized diabetes therapy, but their use has been limited because they require injection. Herein, we describe the discovery of the orally bioavailable, small-molecule, GLP-1R agonist PF-06882961 (danuglipron). A sensitized high-throughput screen was used to identify 5-fluoropyrimidine-based GLP-1R agonists that were optimized to promote endogenous GLP-1R signaling with nanomolar potency.
View Article and Find Full Text PDFPF-06835919 is a first-in-class ketohexokinase inhibitor (KHKi), recently under development for the treatment of metabolic and fatty liver diseases, which inhibited organic anion transporting polypeptide (OATP)1B1 in vitro and presented drug-drug interaction (DDI) risk. This study aims to investigate the dose-dependent effect of KHKi on OATP1B in vivo activity. We performed an open-label study comparing pharmacokinetics of atorvastatin (OATP1B probe) dosed alone (20 mg single dose) and coadministered with two dose strengths of KHKi (50 and 280 mg once daily) in 12 healthy participants.
View Article and Find Full Text PDFAccurate prediction of human clearance is of critical importance in drug discovery. In this study, in vitro - in vivo extrapolation (IVIVE) of hepatic clearance was established using large sets of compounds for four preclinical species (mouse, rat, dog, and non-human primate) to enable better understanding of clearance mechanisms and human translation. In vitro intrinsic clearances were obtained using pooled liver microsomes (LMs) or hepatocytes (HEPs) and scaled to hepatic clearance using the parallel-tube and well-stirred models.
View Article and Find Full Text PDFCytochrome P450 3A (CYP3A) is a frequent target for time-dependent inhibition (TDI) that can give rise to drug-drug interactions (DDI). Yet many drugs that exhibit in vitro TDI for CYP3A do not result in DDI. There were 23 drugs with published clinical DDI evaluated for CYP3A TDI in human liver microsomes (HLM) and hepatocytes (HHEP), and these data were used in static and dynamic models for projecting DDI caused by inactivation of CYP3A in both liver and intestine.
View Article and Find Full Text PDFExpert Opin Drug Metab Toxicol
July 2021
: Intracellular-free drug concentration (C) and unbound partition coefficient (Kp) are two important parameters to develop pharmacokinetic and pharmacodynamic relationships, predict drug-drug interaction potentials and estimate therapeutic indices.: Methods on measurements of C, Kp partition coefficient (Kp) and fraction unbound of cells (f) are discussed. Advantages and limitations of several f methods are reviewed.
View Article and Find Full Text PDFIt is generally presumed that uptake transport mechanisms are of limited significance in hepatic clearance for lipophilic or high passive-permeability drugs. In this study, we evaluated the mechanistic role of the hepato-selective organic anion-transporting polypeptides (OATPs) 1B1/1B3 in the pharmacokinetics of compounds representing large lipophilic acid space. Intravenous pharmacokinetics of 16 compounds with molecular mass ∼400-730 Da, logP ∼3.
View Article and Find Full Text PDFVolume of distribution at steady state (V) is an important pharmacokinetic parameter of a drug candidate. In this study, V prediction accuracy was evaluated by using: (1) seven methods for rat with 56 compounds, (2) four methods for human with 1276 compounds, and (3) four in vivo methods and three Kp (partition coefficient) scalar methods from scaling of three preclinical species with 125 compounds. The results showed that the global QSAR models outperformed the PBPK methods.
View Article and Find Full Text PDFCurrent challenges with the in vitro-in vivo extrapolation (IVIVE) of hepatic uptake clearance involving organic anion-transporting polypeptide (OATP) 1B1/1B3 hinder drug design strategies. Here we evaluated the effect of 100% human plasma on the uptake clearance using transfected human embryonic kidney (HEK) 293 cells and primary human hepatocytes and assessed IVIVE. Apparent unbound uptake clearance (PS) increased significantly ( < 0.
View Article and Find Full Text PDFProspective predictions of human hepatic clearance for anionic/zwitterionic compounds, which are oftentimes subjected to transporter-mediated uptake, are challenging in drug discovery. We evaluated the utility of preclinical species, rats and cynomolgus monkeys [nonhuman primates (NHPs)], to predict the human hepatic clearance using a diverse set of acidic/zwitterionic drugs. Preclinical clearance data were generated following intravenous dosing in rats/NHPs and compared to the human clearance data ( = 18/27).
View Article and Find Full Text PDF