Publications by authors named "David T Schoen"

The scaling of active photonic devices to deep-submicron length scales has been hampered by the fundamental diffraction limit and the absence of materials with sufficiently strong electro-optic effects. Plasmonics is providing new opportunities to circumvent this challenge. Here we provide evidence for a solid-state electro-optical switching mechanism that can operate in the visible spectral range with an active volume of less than (5 nm)(3) or ∼10(-6) λ(3), comparable to the size of the smallest electronic components.

View Article and Find Full Text PDF

We demonstrate coherent control over the optical response of a coupled plasmonic resonator by high-energy electron beam excitation. We spatially control the position of an electron beam on a gold dolmen and record the cathodoluminescence and electron energy loss spectra. By selective coherent excitation of the dolmen elements in the near field, we are able to manipulate modal amplitudes of bonding and antibonding eigenmodes.

View Article and Find Full Text PDF

Metamaterials have enabled the realization of unconventional electromagnetic properties not found in nature, which provokes us to rethink the established rules of optics in both the linear and nonlinear regimes. One of the most intriguing phenomena in nonlinear metamaterials is 'backward phase-matching', which describes counter-propagating fundamental and harmonic waves in a negative-index medium. Predicted nearly a decade ago, this process is still awaiting a definitive experimental confirmation at optical frequencies.

View Article and Find Full Text PDF

The resonant properties of a plasmonic cavity are determined by the size of the cavity, the surface plasmon polariton (SPP) dispersion relationship, and the complex reflection coefficients of the cavity boundaries. In small wavelength-scale cavities, the phase propagation due to reflections from the cavity walls is of a similar magnitude to propagation due to traversing the cavity. Until now, this reflection phase has been inferred from measurements of the resonant frequencies of a cavity of known dispersion and length.

View Article and Find Full Text PDF

Nanowire solar cells are receiving a significant amount of attention for their potential to improve light absorption and charge collection in photovoltaics. Single-nanowire solar cells offer the ability to investigate performance limits for macroscale devices, as well as the opportunity for in-depth structural characterization and property measurement in small working devices. Copper indium selenide (CIS) is a material uniquely suited to these investigations.

View Article and Find Full Text PDF

One of the simplest and most common structures used for directing light in macroscale applications is the parabolic reflector. Parabolic reflectors are ubiquitous in many technologies, from satellite dishes to hand-held flashlights. Today, there is a growing interest in the use of ultracompact metallic structures for manipulating light on the wavelength scale.

View Article and Find Full Text PDF

Natural systems often utilize a single protein to perform multiple functions. Control over functional specificity is achieved through interactions with other proteins at well-defined epitope binding sites to form a variety of functional coassemblies. Inspired by the biological use of epitope recognition to perform diverse yet specific functions, we present a Template Engineering Through Epitope Recognition (TEThER) strategy that takes advantage of noncovalent, molecular recognition to achieve functional versatility from a single protein template.

View Article and Find Full Text PDF

The removal of bacteria and other organisms from water is an extremely important process, not only for drinking and sanitation but also industrially as biofouling is a commonplace and serious problem. We here present a textile based multiscale device for the high speed electrical sterilization of water using silver nanowires, carbon nanotubes, and cotton. This approach, which combines several materials spanning three very different length scales with simple dying based fabrication, makes a gravity fed device operating at 100000 L/(h m(2)) which can inactivate >98% of bacteria with only several seconds of total incubation time.

View Article and Find Full Text PDF

In(2)Se(3) nanowires synthesized by the VLS technique are transformed by solid-state reaction with copper into high-quality single-crystalline CuInSe(2) nanowires. The process is studied by in situ transmission electron microscopy. The transformation temperature exhibits a surprising anisotropy, with In(2)Se(3) nanowires grown along their [0001] direction transforming at a surprisingly low temperature of 225 degrees C, while nanowires in a [11(2)0] orientation require a much higher temperature of 585 degrees C.

View Article and Find Full Text PDF

Solid-state structural transformation coupled with an electronic property change is an important mechanism for nonvolatile information storage technologies, such as phase-change memories. Here we exploit phase-change GeTe single-nanowire devices combined with ex situ and in situ transmission electron microscopy to correlate directly nanoscale structural transformations with electrical switching and discover surprising results. Instead of crystalline-amorphous transformation, the dominant switching mechanism during multiple cycling appears to be the opening and closing of voids in the nanowires due to material migration, which offers a new mechanism for memory.

View Article and Find Full Text PDF

Driven by interactions due to the charge, spin, orbital, and lattice degrees of freedom, nanoscale inhomogeneity has emerged as a new theme for materials with novel properties near multiphase boundaries. As vividly demonstrated in complex metal oxides (see refs 1-5) and chalcogenides (see refs 6 and 7), these microscopic phases are of great scientific and technological importance for research in high-temperature superconductors (see refs 1 and 2), colossal magnetoresistance effect (see ref 4), phase-change memories (see refs 5 and 6), and domain switching operations (see refs 7-9). Direct imaging on dielectric properties of these local phases, however, presents a big challenge for existing scanning probe techniques.

View Article and Find Full Text PDF

Layer-structured indium selenide (In 2Se 3) nanowires (NWs) have large anisotropy in both shape and bonding. In 2Se 3 NWs show two types of growth directions: [11-20] along the layers and [0001] perpendicular to the layers. We have developed a powerful technique combining high-resolution transmission electron microscopy (HRTEM) investigation with single NW electrical transport measurement, which allows us to correlate directly the electrical properties and structure of the same individual NWs.

View Article and Find Full Text PDF