Background: Electrical stimulation of residual afferent nerve fibers can evoke sensations from a missing limb after amputation, and bionic arms endowed with artificial sensory feedback have been shown to confer functional and psychological benefits. Here we explore the extent to which artificial sensations can be discriminated based on location, quality, and intensity.
Methods: We implanted Utah Slanted Electrode Arrays (USEAs) in the arm nerves of three transradial amputees and delivered electrical stimulation via different electrodes and frequencies to produce sensations on the missing hand with various locations, qualities, and intensities.
IEEE Trans Neural Syst Rehabil Eng
October 2019
Bypass sockets allow researchers to perform tests of prosthetic systems from the prosthetic user's perspective. We designed a modular upper-limb bypass socket with 3D-printed components that can be easily modified for use with a variety of terminal devices. Our bypass socket preserves access to forearm musculature and the hand, which are necessary for surface electromyography and to provide substituted sensory feedback.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
May 2019
Although recent advances in neuroprostheses offer opportunities for improved and intuitive control of advanced motorized and sensorized robotic arms, practical complications associated with such hardware can impede the research necessary for clinical translation. These hurdles potentially can be reduced with virtual reality environments (VREs) with embedded physics engines using virtual models of physical robotic hands. These software suites offer several advantages over physical prototypes, including high repeatability, reduced human error, elimination of many secondary sensory cues, and others.
View Article and Find Full Text PDFWe quantified prosthesis embodiment and phantom pain reduction associated with motor control and sensory feedback from a prosthetic hand in one human with a long-term transradial amputation. Microelectrode arrays were implanted in the residual median and ulnar arm nerves and intramuscular electromyography recording leads were implanted in residual limb muscles to enable sensory feedback and motor control. Objective measures (proprioceptive drift) and subjective measures (survey answers) were used to assess prosthesis embodiment.
View Article and Find Full Text PDFObjectives: Kilohertz high-frequency alternating current (KHFAC) electrical nerve stimulation produces a reversible nerve block in peripheral nerves in human patients with chronic pain pathologies. Although this stimulation methodology has been verified with nonselective extrafascicular electrodes, the effectiveness of producing a selective nerve block with more-selective intrafascicular electrodes has not been well documented. The objective of this study was to examine whether intrafascicular electrodes can block painful stimuli while preserving conduction of other neural activity within the implanted nerve.
View Article and Find Full Text PDFBackground: Despite advances in sophisticated robotic hands, intuitive control of and sensory feedback from these prostheses has been limited to only 3-degrees-of-freedom (DOF) with 2 sensory percepts in closed-loop control. A Utah Slanted Electrode Array (USEA) has been used in the past to provide up to 81 sensory percepts for human amputees. Here, we report on the advanced capabilities of multiple USEAs implanted in the residual peripheral arm nerves of human amputees for restoring control of 5 DOF and sensation of up to 131 proprioceptive and cutaneous hand sensory percepts.
View Article and Find Full Text PDF