Publications by authors named "David T Attwood"

We have realized the first demonstration of a table-top aerial imaging microscope capable of characterizing pattern and defect printability in extreme ultraviolet lithography masks. The microscope combines the output of a 13.2 nm wavelength, table-top, plasma-based, EUV laser with zone plate optics to mimic the imaging conditions of an EUV lithographic stepper.

View Article and Find Full Text PDF

We have demonstrated near-wavelength resolution microscopy in the extreme ultraviolet. Images of 50 nm diameter nanotubes were obtained with a single ~1 ns duration pulse from a desktop-size 46.9 nm laser.

View Article and Find Full Text PDF

Analytical tools that have spatial resolution at the nanometre scale are indispensable for the life and physical sciences. It is desirable that these tools also permit elemental and chemical identification on a scale of 10 nm or less, with large penetration depths. A variety of techniques in X-ray imaging are currently being developed that may provide these combined capabilities.

View Article and Find Full Text PDF

A spatial resolution of 20 nm is demonstrated at 2.07-nm wavelength by use of a soft x-ray microscope based on Fresnel zone plate lenses and partially coherent illumination. Nanostructural test patterns, formed by sputtered multilayer coatings and transmission electron microscopy thinning techniques, provide clear experimental results.

View Article and Find Full Text PDF

We demonstrate enhanced generation of coherent light in the "water window" region of the soft x-ray spectrum at 4.4 nanometers, using quasi-phase-matched frequency conversion of ultrafast laser pulses. By periodically modulating the diameter of a gas-filled hollow waveguide, the phase mismatch normally present between the laser light and the generated soft x-ray light can be partially compensated.

View Article and Find Full Text PDF