Publications by authors named "David Strubbe"

Point defects in two-dimensional materials are of key interest for quantum information science. However, the parameter space of possible defects is immense, making the identification of high-performance quantum defects very challenging. Here, we perform high-throughput (HT) first-principles computational screening to search for promising quantum defects within WS, which present localized levels in the band gap that can lead to bright optical transitions in the visible or telecom regime.

View Article and Find Full Text PDF

The distorted phases of monolayer 1T-MoS have distinct electronic properties, with potential applications in optoelectronics, catalysis, and batteries. We theoretically investigate the use of Ni-doping to generate distorted 1T phases and find not only the ones usually reported but also two further phases (3 × 3 and 4 × 4), depending on the concentration and the substitutional or adatom doping site. Corresponding pristine phases are stable after removal of dopants, which might offer a potential route to experimental synthesis.

View Article and Find Full Text PDF

Thermoelectric materials with high electrical conductivity and low thermal conductivity (e.g., BiTe) can efficiently convert waste heat into electricity; however, in spite of favorable theoretical predictions, individual BiTe nanostructures tend to perform less efficiently than bulk BiTe.

View Article and Find Full Text PDF

Organic metal halide hybrids with low-dimensional structures at the molecular level have received great attention recently for their exceptional structural tunability and unique photophysical properties. Here we report for the first time the synthesis and characterization of a one-dimensional (1D) organic metal halide hybrid, which contains metal halide nanoribbons with a width of three octahedral units. It is found that this material with a chemical formula CHNPbCl shows a dual emission with a photoluminescence quantum efficiency (PLQE) of around 25%.

View Article and Find Full Text PDF

We present results of atomic-force-microscopy-based friction measurements on Re-doped molybdenum disulfide (MoS). In stark contrast to the widespread observation of decreasing friction with increasing number of layers on two-dimensional (2D) materials, friction on Re-doped MoSexhibits an anomalous, i.e.

View Article and Find Full Text PDF

First-principles electronic structure calculations are now accessible to a very large community of users across many disciplines, thanks to many successful software packages, some of which are described in this special issue. The traditional coding paradigm for such packages is monolithic, i.e.

View Article and Find Full Text PDF

Over the last few years, extraordinary advances in experimental and theoretical tools have allowed us to monitor and control matter at short time and atomic scales with a high degree of precision. An appealing and challenging route toward engineering materials with tailored properties is to find ways to design or selectively manipulate materials, especially at the quantum level. To this end, having a state-of-the-art ab initio computer simulation tool that enables a reliable and accurate simulation of light-induced changes in the physical and chemical properties of complex systems is of utmost importance.

View Article and Find Full Text PDF

Solar thermal fuels (STFs) are an unconventional paradigm for solar energy conversion and storage which is attracting renewed attention. In this concept, a material absorbs sunlight and stores the energy chemically via an induced structural change, which can later be reversed to release the energy as heat. An example is the azobenzene molecule which has a cis-trans photoisomerization with these properties, and can be tuned by chemical substitution and attachment to templates such as carbon nanotubes, small molecules, or polymers.

View Article and Find Full Text PDF

Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models.

View Article and Find Full Text PDF

Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time.

View Article and Find Full Text PDF

Calculations of the hyperpolarizability are typically much more difficult to converge with basis set size than the linear polarizability. In order to understand these convergence issues and hence obtain accurate ab initio values, we compare calculations of the static hyperpolarizability of the gas-phase chloroform molecule (CHCl(3)) using three different kinds of basis sets: Gaussian-type orbitals, numerical basis sets, and real-space grids. Although all of these methods can yield similar results, surprisingly large, diffuse basis sets are needed to achieve convergence to comparable values.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers used scanning tunneling microscopy to study tetra-tert-butyl azobenzene (TTB-AB) molecules on a gold surface, discovering that their behavior when exposed to light is influenced by their chirality.
  • The trans-TTB-AB molecules naturally form homochiral clusters, and the resulting cis-TTB-AB molecules, created by exposure to light, can exist in two forms based on their original chirality.
  • The findings suggest a new mechanism for how azobenzene molecules switch states on surfaces, which involves inverting their chirality during this process.
View Article and Find Full Text PDF

We have observed reversible light-induced mechanical switching for individual organic molecules bound to a metal surface. Scanning tunneling microscopy (STM) was used to image the features of individual azobenzene molecules on Au(111) before and after reversibly cycling their mechanical structure between trans and cis states using light. Azobenzene molecules were engineered to increase their surface photomechanical activity by attaching varying numbers of tert-butyl (TB) ligands ("legs") to the azobenzene phenyl rings.

View Article and Find Full Text PDF