Publications by authors named "David Soltys"

Introduction: Objective and accessible markers for Alzheimer's disease (AD) and other dementias are critically needed.

Methods: We identified NMDAR2A, a protein related to synaptic function, as a novel marker of central nervous system (CNS)-derived plasma extracellular vesicles (EVs) and developed a flow cytometry-based technology for detecting such plasma EVs readily. The assay was initially tested in our local cross-sectional study to distinguish AD patients from healthy controls (HCs) or from Parkinson's disease (PD) patients, followed by a validation study using an independent cohort collected from multiple medical centers (the Alzheimer's Disease Neuroimaging Initiative).

View Article and Find Full Text PDF

Objective: To develop a reliable and fast assay to quantify the α-synuclein (α-syn)-containing extracellular vesicles (EVs) in CSF and to assess their diagnostic potential for Parkinson disease (PD).

Methods: A cross-sectional, multicenter study was designed, including 170 patients with PD and 131 healthy controls (HCs) with a similar distribution of age and sex recruited from existing center studies at the University of Washington and Oregon Health and Science University. CSF EVs carrying α-syn or aggregated α-syn were quantified using antibodies against total or aggregated α-syn, respectively, and highly specific, sensitive, and rapid assays based on the novel Apogee nanoscale flow cytometry technology.

View Article and Find Full Text PDF

Peripheral biomarkers indicative of brain pathology are critically needed for early detection of Parkinson's disease (PD). In this study, using NanoString and digital PCR technologies, we began by screening for alterations in genes associated with PD or atypical Parkinsonism in erythrocytes of PD patients, in which PD-related changes have been reported, and which contain ~ 99% of blood α-synuclein. Erythrocytic CHCHD2 mRNA was significantly reduced even at the early stages of the disease.

View Article and Find Full Text PDF

Parkinson's disease is a neurodegenerative disorder characterized by the transmission and accumulation of toxic species of α-synuclein (α-syn). Extracellular vesicles (EVs) are believed to play a vital role in the spread of toxic α-syn species. Recently, peripheral α-syn pathology has been investigated, but little attention has been devoted to erythrocytes, which contain abundant α-syn.

View Article and Find Full Text PDF

Biological functions of extracellular vesicles (EVs) are being discovered to be critical in neurodegenerative disorders, including Parkinson's disease (PD). A previous study using cellular models of PD has suggested that EVs derived from microglia exposed to aggregated α-synuclein (α-Syn) leads to enhanced neurotoxicity. However, the function of EVs derived from microglia not treated with aggregated a-Syn or treated with monomeric α-Syn are unclear.

View Article and Find Full Text PDF

Background: Erythrocytes are a major source of peripheral α-synuclein (α-Syn). The goal of the current investigation is to evaluate erythrocytic total, oligomeric/aggregated, and phosphorylated α-Syn species as biomarkers of Parkinson's disease (PD). PD and healthy control blood samples were collected along with extensive clinical history to determine whether total, phosphorylated, or aggregated α-Syn derived from erythrocytes (the major source of blood α-Syn) are more promising and consistent biomarkers for PD than are free α-Syn species in serum or plasma.

View Article and Find Full Text PDF

Background: Neurodegenerative diseases require characterization based on underlying biology using biochemical biomarkers. Mixed pathology complicates discovery of biomarkers and characterization of cohorts, but inclusion of greater numbers of patients with different, related diseases with frequently co-occurring pathology could allow better accuracy. Combining cohorts collected from different studies would be a more efficient use of resources than recruiting subjects from each population of interest for each study.

View Article and Find Full Text PDF