Cathode degradation is a key factor that limits the lifetime of Li-ion batteries. To identify functional coatings that can suppress this degradation, we present a high-throughput density functional theory based framework which consists of reaction models that describe thermodynamic and electrochemical stabilities, and acid-scavenging capabilities of materials. Screening more than 130,000 oxygen-bearing materials, we suggest physical and hydrofluoric-acid barrier coatings such as WO, LiAlO and ZrPO and hydrofluoric-acid scavengers such as ScO, LiCaGeO, LiBO, LiNbO, Mg(BO) and LiMgSiO.
View Article and Find Full Text PDFTo explore the impact of global incorporation of fluorinated aromatic amino acids on protein function, we investigated the effects of three monofluorinated phenylalanine analogs para-fluorophenylalanine (pFF), meta-fluorophenylalanine (mFF), and ortho-fluorophenylalanine (oFF) on the stability and enzymatic activity of the histone acetyltransferase (HAT), tGCN5. We selected this set of fluorinated amino acids because they bear the same size and overall polarity but alter in side chain shape and dipole direction. Our experiments showed that among three fluorinated amino acids, the global incorporation of pFF affords the smallest perturbation to the structure and function of tGCN5.
View Article and Find Full Text PDF