Fixation-related potentials (FRPs) enable examination of electrophysiological signatures of visual perception under naturalistic conditions, providing a neural snapshot of the fixated scene. The most prominent FRP component, commonly referred to as the lambda response, is a large deflection over occipital electrodes (O1, Oz, O2) peaking 80-100 ms post fixation, reflecting afferent input to visual cortex. The lambda response is affected by bottom-up stimulus features and the size of the preceding saccade; however, prior research has not adequately controlled for these influences in free viewing paradigms.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
March 2016
The application space for brain-computer interface (BCI) technologies is rapidly expanding with improvements in technology. However, most real-time BCIs require extensive individualized calibration prior to use, and systems often have to be recalibrated to account for changes in the neural signals due to a variety of factors including changes in human state, the surrounding environment, and task conditions. Novel approaches to reduce calibration time or effort will dramatically improve the usability of BCI systems.
View Article and Find Full Text PDF