Publications by authors named "David Skalnik"

Progesterone (P) is required for the preparation of the endometrium for a successful pregnancy. P resistance is a leading cause of the pathogenesis of endometrial disorders like endometriosis, often leading to infertility; however, the underlying epigenetic cause remains unclear. Here we demonstrate that CFP1, a regulator of H3K4me3, is required for maintaining epigenetic landscapes of P-progesterone receptor (PGR) signaling networks in the mouse uterus.

View Article and Find Full Text PDF

Meiosis occurs specifically in germ cells to produce sperm and oocytes that are competent for sexual reproduction. Multiple factors are required for successful meiotic entry, progression, and termination. Among them, trimethylation of histone H3 on lysine 4 (H3K4me3), a mark of active transcription, has been implicated in spermatogenesis by forming double-strand breaks (DSBs).

View Article and Find Full Text PDF

In mammalian cells, distinct H3K4 methylation states are created by deposition of methyl groups by multiple complexes of histone lysine methyltransferase 2 (KMT2) family proteins. For comprehensive analyses that directly compare the catalytic properties of all six human KMT2 complexes, we employed a biochemically defined system reconstituted with recombinant KMT2 core complexes (KMT2CoreCs) containing minimal components required for nucleosomal H3K4 methylation activity. We found that each KMT2CoreC generates distinct states and different levels of H3K4 methylation, and except for MLL3 all are stimulated by H2Bub.

View Article and Find Full Text PDF

Embryonic stem cells (ESCs) maintain pluripotency through unique epigenetic states. When ESCs commit to a specific lineage, epigenetic changes in histones and DNA accompany the transition to specialized cell types. Investigating how epigenetic regulation controls lineage specification is critical in order to generate the required cell types for clinical applications.

View Article and Find Full Text PDF
Article Synopsis
  • Components of the Fanconi anemia and homologous recombination pathways are essential for protecting newly replicated DNA from degradation, thus maintaining genome stability.
  • The lysine methyltransferase SETD1A plays a key role in preventing damage to stalled replication forks by catalyzing the methylation of histone H3 at Lys4 (H3K4), which enhances the function of FANCD2 as a histone chaperone.
  • Depleting SETD1A or inhibiting H3K4 methylation leads to the degradation of replication forks, highlighting how epigenetic modifications and histone mobility are critical for genome stability by controlling nucleolytic activity.
View Article and Find Full Text PDF

Mammalian CXXC finger protein 1 (Cfp1) is a DNA-binding protein that is a component of the Setd1 histone methyltransferase complexes and is a critical epigenetic regulator of both histone and cytosine methylation. Murine embryonic stem (ES) cells lacking Cfp1 exhibit a loss of histone H3-Lys4 tri-methylation (H3K4me3) at many CpG islands, and a mis-localization of this epigenetic mark to heterochromatic sub-nuclear domains. Furthermore, these cells fail to undergo cellular differentiation in vitro.

View Article and Find Full Text PDF

MLL1 belongs to the SET1 family of histone H3 lysine 4 (H3K4) methyltransferases, composed of MLL1-4 and SETd1A/B. MLL1 translocations are present in acute leukemias, and mutations in several family members are associated with cancer and developmental disorders. MLL1 associates with a subcomplex containing WDR5, RbBP5, ASH2L, and DPY-30 (WRAD), forming the MLL1 core complex required for H3K4 mono- and dimethylation and transcriptional activation.

View Article and Find Full Text PDF

Limited core transcription factors and transcriptional cofactors have been shown to govern embryonic stem cell (ESC) transcriptional circuitry and pluripotency, but the molecular interactions between the core transcription factors and cofactors remains ill defined. Here, we analyzed the protein-protein interactions between Oct4, Sox2, Klf4, and Myc (abbreviated as OSKM) and a large panel of cofactors. The data reveal both specific and common interactions between OSKM and cofactors.

View Article and Find Full Text PDF

CXXC finger protein 1 (Cfp1), encoded by the Cxxc1 gene, binds to DNA sequences containing an unmethylated CpG dinucleotide and is an epigenetic regulator of both cytosine and histone methylation. Cxxc1-null mouse embryos fail to gastrulate, and Cxxc1-null embryonic stem cells are viable but cannot differentiate, suggesting that Cfp1 is required for chromatin remodeling associated with stem cell differentiation and embryogenesis. Mice homozygous for a conditional Cxxc1 deletion allele and carrying the inducible Mx1-Cre transgene were generated to assess Cfp1 function in adult animals.

View Article and Find Full Text PDF

Affinity purification and mass spectrometry analysis have been used to identify and characterize protein complexes. Wdr82-associated chromatin modifying complexes were purified by single-step FLAG affinity purification from human cells induced to express FLAG-tagged Wdr82. Purified proteins were analyzed by SDS-PAGE and specific protein bands were identified by mass spectrometry.

View Article and Find Full Text PDF

The Rbm15-Mkl1 fusion protein is associated with acute megakaryoblastic leukemia (AMKL), although little is known regarding the molecular mechanism(s) whereby this fusion protein contributes to leukemogenesis. Here, we show that both Rbm15 and the leukemogenic Rbm15-Mkl1 fusion protein interact with the Setd1b histone H3-Lys4 methyltransferase (also known as KMT2G). This interaction is direct and requires the Rbm15 SPOC domain and the Setd1b LSD motif.

View Article and Find Full Text PDF

Trimethylation of histone H3 Lys 4 (H3K4me3) is a mark of active and poised promoters. The Set1 complex is responsible for most somatic H3K4me3 and contains the conserved subunit CxxC finger protein 1 (Cfp1), which binds to unmethylated CpGs and links H3K4me3 with CpG islands (CGIs). Here we report that Cfp1 plays unanticipated roles in organizing genome-wide H3K4me3 in embryonic stem cells.

View Article and Find Full Text PDF

Translocations and amplifications of the mixed lineage leukemia-1 (MLL1) gene are associated with aggressive myeloid and lymphocytic leukemias in humans. MLL1 is a member of the SET1 family of histone H3 lysine 4 (H3K4) methyltransferases, which are required for transcription of genes involved in hematopoiesis and development. MLL1 associates with a subcomplex containing WDR5, RbBP5, Ash2L, and DPY-30 (WRAD), which together form the MLL1 core complex that is required for sequential mono- and dimethylation of H3K4.

View Article and Find Full Text PDF

Ubiquitylation of H2B on lysine 120 (H2Bub) is associated with active transcriptional elongation. H2Bub has been implicated in histone cross talk and is generally regarded to be a prerequisite for trimethylation of histone 3 lysine 4 (H3K4me3) and H3K79 in both yeast and mammalian cells. We performed a genome-wide analysis of epigenetic marks during muscle differentiation, and strikingly, we observed a near-complete loss of H2Bub in the differentiated state.

View Article and Find Full Text PDF

Introduction: Ritonavir is a potential therapeutic agent in lung cancer, but its targets in lung adenocarcinoma are unknown, as are candidate biomarkers for its activity.

Methods: RNAi was used to identify genes whose expression affects ritonavir sensitivity. Synergy between ritonavir, gemcitabine, and cisplatin was tested by isobologram analysis.

View Article and Find Full Text PDF
The epigenetic regulator Cfp1.

Biomol Concepts

December 2010

Numerous epigenetic modifications have been identified and correlated with transcriptionally active euchromatin or repressed heterochromatin and many enzymes responsible for the addition and removal of these marks have been characterized. However, less is known regarding how these enzymes are regulated and targeted to appropriate genomic locations. Mammalian CXXC finger protein 1 is an epigenetic regulator that was originally identified as a protein that binds specifically to any DNA sequence containing an unmethylated CpG dinucleotide.

View Article and Find Full Text PDF

Mammalian Wdr82 is a regulatory component of the Setd1a and Setd1b histone H3-lysine 4 methyltransferase complexes and is implicated in the tethering of Setd1 complexes to transcriptional start sites of active genes. In the studies reported here, immunoprecipitation and mass spectrometry analyses reveal that Wdr82 additionally associates with multiple protein complexes, including an RNA polymerase II complex, four distinct histone H3-Lys(4) methyltransferase complexes, protein phosphatase 1 (PP1)-associated proteins, a chaperonin-containing Tcp1 complex, and other uncharacterized proteins. Further characterization of the PP1-associated proteins identified a stable multimeric complex composed of regulatory subunits PNUTS, Tox4, and Wdr82 and a PP1 catalytic subunit (denoted as the PTW/PP1 phosphatase complex).

View Article and Find Full Text PDF

CXXC finger protein 1 (Cfp1), encoded by the CXXC1 gene, is a component of the euchromatic Setd1A histone H3K4 methyltransferase complex, and is a critical regulator of histone methylation, cytosine methylation, cellular differentiation, and vertebrate development. Murine embryonic stem (ES) cells lacking Cfp1 (CXXC1(-/-)) are viable but show increased levels of global histone H3K4 methylation, suggesting that Cfp1 functions to inhibit or restrict the activity of the Setd1A histone H3K4 methyltransferase complex. The studies reported here reveal that ES cells lacking Cfp1 contain decreased levels of Setd1A and show subnuclear mislocalization of both Setd1A and trimethylation of histone H3K4 with regions of heterochromatin.

View Article and Find Full Text PDF

Modulation of chromatin structure plays an important role in the recruitment and function of DNA repair proteins. CXXC finger protein 1 (Cfp1), encoded by the CXXC1 gene, is essential for mammalian development and is an important regulator of chromatin structure. Murine embryonic stem (ES) cells lacking Cfp1 (CXXC1(-/-)) are viable but demonstrate a dramatic decrease in cytosine methylation, altered histone methylation, and an inability to differentiate.

View Article and Find Full Text PDF

CXXC finger protein 1 (Cfp1) is a regulator of both cytosine methylation and histone methylation. Murine embryonic stem (ES) cells lacking Cfp1 exhibit a decreased plating efficiency, decreased cytosine methylation, elevated global levels of histone H3-Lys4 trimethylation, and a failure to differentiate in vitro. Remarkably, transfection studies reveal that expression of either the amino half of Cfp1 (amino acids 1 to 367 [Cfp1(1-367)]) or the carboxyl half of Cfp1 (Cfp1(361-656)) is sufficient to correct all of the defects observed with ES cells that lack Cfp1.

View Article and Find Full Text PDF

CXXC finger protein 1 (CFP1) binds to unmethylated CpG dinucleotides and is required for embryogenesis. CFP1 is also a component of the Setd1A and Setd1B histone H3K4 methyltransferase complexes. Murine embryonic stem (ES) cells lacking CFP1 fail to differentiate, and exhibit a 70% reduction in global genomic cytosine methylation and a 50% reduction in DNA methyltransferase (DNMT1) protein and activity.

View Article and Find Full Text PDF

Rac2 is a Rho family GTPase that is widely expressed in hematopoietic cells and plays a critical role in host defense. This study investigates the mechanisms responsible for increased Rac2 gene expression during myeloid cell differentiation. Treatment of K562 chronic myelogenous leukemia cells with phorbol-12-myristate-13-acetate (PMA) induces megakaryocytic differentiation and Rac2 gene transcription following a lag of 6-12 h.

View Article and Find Full Text PDF

DNA methylation levels are affected by numerous environmental influences, including diet and xenobiotic exposure, and neoplasia has been firmly associated with genomic hypomethylation and localized hypermethylation of tumor suppressor genes. To reverse methylation-induced gene repression, DNA hypomethylating agents are currently in clinical trials for various malignancies, with two of these now approved for the therapy of myelodysplastic syndrome, and the efficacy of these drugs can be assessed by the monitoring of global DNA methylation levels. Herein, we outline a simple, well-established method for the evaluation of genomic DNA methylation levels, based on the ability of isolated DNA to "accept" radiolabeled methyl groups from S-[3H-methyl] adenosylmethionine, using the bacterial CpG methyltransferase SssI.

View Article and Find Full Text PDF

CXXC finger protein 1 (CFP1) is a component of the Setd1A and Setd1B methyltransferase complexes, localizes to euchromatic regions of the genome, and specifically binds unmethylated CpG dinucleotides in DNA. Murine embryos lacking CFP1 exhibit peri-implantation lethality, a developmental time that correlates with global epigenetic reprogramming. CFP1-deficient embryonic stem (ES) cells exhibit a 70% reduction in global cytosine methylation and a 60% decrease in maintenance DNA methyltransferase (DNMT1) activity.

View Article and Find Full Text PDF

Histone H3-Lys4 trimethylation is associated with the transcription start site of transcribed genes, but the molecular mechanisms that control this distribution in mammals are unclear. The human Setd1A histone H3-Lys4 methyltransferase complex was found to physically associate with the RNA polymerase II large subunit. The Wdr82 component of the Setd1A complex interacts with the RNA recognition motif of Setd1A and additionally binds to the Ser5-phosphorylated C-terminal domain of RNA polymerase II, which is involved in initiation of transcription, but does not bind to an unphosphorylated or Ser2-phosphorylated C-terminal domain.

View Article and Find Full Text PDF