Publications by authors named "David Sinefeld"

imaging of the neurovascular network is considered to be one of the most powerful approaches for understanding brain functionality. Nevertheless, simultaneously imaging the biological neural network and blood vessels in deep brain layers in a non-invasive manner remains to a major challenge due to the lack of appropriate labeling fluorescence probe pairs. Herein, we proposed a 2-photon and 3-photon fluorescence probe pair for neurovascular imaging.

View Article and Find Full Text PDF

Three-photon microscopy (3PM) was shown to allow deeper imaging than two-photon microscopy (2PM) in scattering biological tissues, such as the mouse brain, since the longer excitation wavelength reduces tissue scattering and the higher-order non-linear excitation suppresses out-of-focus background fluorescence. Imaging depth and resolution can further be improved by aberration correction using adaptive optics (AO) techniques where a spatial light modulator (SLM) is used to correct wavefront aberrations. Here, we present and analyze a 3PM AO system for mouse brain imaging.

View Article and Find Full Text PDF

Spark plasma sintering (SPS) is an advanced one-stage, rapid, near-net shape densification technique combining uniaxial pressure with resistive heating. Various transparent ceramics have been successfully fabricated by SPS, despite the existence of inherent carbon contamination and residual pores. Due to the disk-shape of SPS-processed samples, the technique may be suited for producing thin-disk ceramic laser materials.

View Article and Find Full Text PDF

Behaviors emerge from activity throughout the brain, but noninvasive optical access in adult vertebrate brains is limited. We show that three-photon (3P) imaging through the head of intact adult zebrafish allows structural and functional imaging at cellular resolution throughout the telencephalon and deep into the cerebellum and optic tectum. With 3P imaging, considerable portions of the brain become noninvasively accessible from embryo to sexually mature adult in a vertebrate model.

View Article and Find Full Text PDF

Optical microscopy is a valuable tool for monitoring of biological structures and functions because of its non-invasiveness. However, imaging deep into biological tissues is challenging due to the scattering and absorption of light. Previous research has shown that 1300 nm and 1700 nm are the two best wavelength windows for deep brain imaging.

View Article and Find Full Text PDF

Light attenuation in thick biological tissues, caused by a combination of absorption and scattering, limits the penetration depth in multiphoton microscopy (MPM). Both tissue scattering and absorption are dependent on wavelengths, which makes it essential to choose the excitation wavelength with minimum attenuation for deep imaging. Although theoretical models have been established to predict the wavelength dependence of light attenuation in brain tissues, the accuracy of these models in experimental settings needs to be verified.

View Article and Find Full Text PDF

We introduce a simple wavefront sensing scheme for aberration measurement of pulsed laser beams in near-infrared wavelengths (<2200  nm), where detectors are not always available or are very expensive. The method is based on two-photon absorption in a silicon detector array for longer wavelengths detection. We demonstrate the simplicity of such implementations with a commercially available Shack-Hartmann wavefront sensor and discuss the detection sensitivity of this method.

View Article and Find Full Text PDF

We demonstrate a robust, all-fiber, two-wavelength time-lens source for background-free coherent anti-Stokes Raman scattering imaging. The time-lens source generates two picosecond pulse trains simultaneously: one at 1064 nm and the other tunable between 1040 nm and 1075 nm (~400 mW for each wavelength). When synchronized to a mode-locked Ti:Sapphire laser, the two wavelengths are used to obtain on- and off-resonance coherent anti-Stokes Raman scattering images.

View Article and Find Full Text PDF

We demonstrate adaptive optics system based on nonlinear feedback from 3- and 4-photon fluorescence. The system is based on femtosecond pulses created by soliton self-frequency shift of a 1550-nm fiber-based femtosecond laser together with micro-electro-mechanical system (MEMS) phase spatial light modulator (SLM). We perturb the 1020-segment SLM using an orthogonal Walsh sequence basis set with a modified version of three-point phase shifting interferometry.

View Article and Find Full Text PDF

Variable optical attenuation (VOA) for three-mode fiber is experimentally presented, utilizing an amplitude spatial light modulator (SLM), achieving up to -28dB uniform attenuation for all modes. Using the ability to spatially vary the attenuation distribution with the SLM, we also achieve up to 10dB differential attenuation between the fiber's two supported mode group (LP₀₁ and LP₁₁). The spatially selective attenuation serves as the basis of a dynamic mode-group equalizer (DME), potentially gain-balancing mode dependent optical amplification.

View Article and Find Full Text PDF

We generate transform-limited WDM optical sampling pulse bursts by filtering ultrashort pulses from a mode-locked laser. A phase spatial light modulator (SLM) is used in a biased pulse shaper to circumvent the need to modulate with 2π phase wraps, which are known to limit the phase response. The arrangement compresses and retimes user-selectable bandwidths from the optical short pulse source with precise control of pulse bandwidth, pulse stream rates, and duty cycle.

View Article and Find Full Text PDF

We employ a spatial-light-modulator-based colorless photonic spectral processor with a spectral addressability of 100 MHz along 100 GHz bandwidth, for multichannel, high-resolution reshaping of Gaussian channel response to square-like shape, compatible with Nyquist WDM requirements.

View Article and Find Full Text PDF

We demonstrate passive generation of optical pulse trains with each pulse having distinct center carrier and spectra using tunable group delay (GD) staircase transfer functions. The GD steps result from opposite and equal magnitude GD slopes from narrowband and wideband tunable optical dispersion compensators. We use this technique to split the spectrum of a femtosecond pulse to a pulse burst with precise control of pulse time separation.

View Article and Find Full Text PDF

We demonstrate a tunable fiber ring laser employing a two-dimensional dispersion arrangement filter, with the lasing determined by a liquid crystal on silicon (LCoS) spatial light modulator. Lasing wavelengths can be tuned discontinuously across the communication C-band at an addressable resolution of less than 200 MHz. We introduce full characterization of the laser output including phase and amplitude stability and short and long-term bandwidth measurements.

View Article and Find Full Text PDF

We present a Photonic Spectral Processor (PSP) that provides both fine spectral resolution and broad bandwidth support by dispersing light over two-dimensional space using the crossed-grating approach. The PSP uses a hybrid guided wave/free-space optics arrangement, where a waveguide grating router implemented in silica waveguides disperses the light in one dimension with a 100 GHz FSR and a bulk 1200 gr/mm diffraction grating disperses the light along the second (crossed) dimension. The diffracted light is focused by a lens onto a liquid-crystal on silicon, two-dimensional, phase-only, spatial light modulator, which we use to prescribe phase and amplitude to the signal's spectral components.

View Article and Find Full Text PDF

We propose and demonstrate a compact tunable optical dispersion compensation (TODC) device with a 100 GHz free spectral range capable of mitigating chromatic dispersion impairments. The TODC is based on longitudinal movement of a waveguide grating router, resulting in chromatic dispersion compensation of ±1000 ps/nm. We employed our TODC device for compensating 42.

View Article and Find Full Text PDF