Krypton Tagging Velocimetry (KTV) and Picosecond Laser Electronic Excitation Tagging (PLEET) velocimetry at a 100-kHz rate were demonstrated in Mach 18 flow conditions at the Arnold Engineering Development Center (AEDC) Tunnel 9 employing a burst-mode laser system and a custom optical parametric oscillator (OPO). The measured freestream flow velocities from both KTV and PLEET agreed well with the theoretical calculation. The increase in repetition rate provides better capability to perform time-resolved velocimetry measurements in hypersonic flow environments.
View Article and Find Full Text PDFThis paper presents multi-path, two-photon excitation cross-section calculations for krypton, using first-order perturbation theory. For evaluation of the two-photon-transition matrix element, this paper formulates the two-photon cross-section calculation as a matrix mechanics problem. From a finite basis of states, consisting of 4, 5, 6, 7, 5, 6, 4, 5, and 6 orbitals, electric dipole matrix elements are constructed, and a Green's function is expressed as a truncated, spectral expansion of solutions, satisfying the Schrödinger equation.
View Article and Find Full Text PDF