A major challenge for departments of public health (DPHs) in dealing with the ongoing COVID-19 pandemic is tracing contacts in exponentially growing SARS-CoV-2 infection clusters. Prevention of further disease spread requires a comprehensive registration of the connections between individuals and clusters. Due to the high number of infections with unknown origin, the healthcare analysts need to identify connected cases and clusters through accumulated epidemiological knowledge and the metadata of the infections in their database.
View Article and Find Full Text PDFIn this design study, we present a visualization technique that segments patients' histories instead of treating them as raw event sequences, aggregates the segments using criteria such as the whole history or treatment combinations, and then visualizes the aggregated segments as static dashboards that are arranged in a dashboard network to show longitudinal changes. The static dashboards were developed in nine iterations, to show 15 important attributes from the patients' histories. The final design was evaluated with five non-experts, five visualization experts and four medical experts, who successfully used it to gain an overview of a 2,000 patient dataset, and to make observations about longitudinal changes and differences between two cohorts.
View Article and Find Full Text PDFIEEE Comput Graph Appl
February 2016