Shaping and steering of light beams is essential in many modern applications, ranging from optical tweezers, camera lenses, vision correction to 3D displays. However, current realisations require increasingly greater tunability and aim for lesser specificity for use in diverse applications. Here, we demonstrate tunable light beam control based on multi-layer liquid-crystal cells and external electric field, capable of extended beam shifting, steering, and expanding, using a combination of theory and full numerical modelling, both for liquid crystal orientations and the transmitted light.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2016
Liquid crystals, when confined to a spherical shell, offer fascinating possibilities for producing artificial mesoscopic atoms, which could then self-assemble into materials structured at a nanoscale, such as photonic crystals or metamaterials. The spherical curvature of the shell imposes topological constraints in the molecular ordering of the liquid crystal, resulting in the formation of defects. Controlling the number of defects, that is, the shell valency, and their positions, is a key success factor for the realization of those materials.
View Article and Find Full Text PDFMicrofibers with their elongated shape and translation symmetry can act as important components in various soft materials, notably for their mechanics on the microscopic level. Here we demonstrate the mechanical response of a micro-object to imposed chirality, in this case, the tilt of disclination rings in an achiral nematic medium caused by the chiral surface anchoring on an immersed microfiber. This coupling between chirality and mechanical response, used to demonstrate sensing of chirality of electrospun cellulose microfibers, is revealed in the optical micrographs due to anisotropy in the elastic response of the host medium.
View Article and Find Full Text PDFProbing the surface morphology of microthin fibers such as naturally occurring biofibers is essential for understanding their structural properties, biological function, and mechanical performance. The state-of-the-art methods for studying the surfaces of biofibers are atomic force microscopy imaging and scanning electron microscopy, which well characterize surface geometry of the fibers but provide little information on the local interaction potential of the fibers with the surrounding material. In contrast, complex nematic fluids respond very well to external fields and change their optical properties upon such stimuli.
View Article and Find Full Text PDFKnotted fields are an emerging research topic relevant to different areas of physics where topology plays a crucial role. Recent realization of knotted nematic disclinations stabilized by colloidal particles raised a challenge of free-standing knots. Here we demonstrate the creation of free-standing knotted and linked disclination loops in the cholesteric ordering fields, which are confined to spherical droplets with homeotropic surface anchoring.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2012
We introduce the idea of transformation trajectories to describe the evolution of nematic shells in terms of defect locations and director field when the elastic anisotropy and the shell thickness heterogeneity vary. Experiments are compared to numerical results to clarify the exact role played by these two parameters. We demonstrate that heterogeneity in thickness is a result of a symmetry breaking initiated by buoyancy and enhanced by liquid crystal elasticity, and is irrespective of the elastic anisotropy.
View Article and Find Full Text PDF