Publications by authors named "David Schley"

To control an outbreak of an infectious disease it is essential to understand the different routes of transmission and how they contribute to the overall spread of the pathogen. With this information, policy makers can choose the most efficient methods of detection and control during an outbreak. Here we assess the contributions of direct contact and environmental contamination to the transmission of foot-and-mouth disease virus (FMDV) in a cattle herd using an individual-based model that includes both routes.

View Article and Find Full Text PDF

Type I interferons (IFN) are the first line of immune response against infection. In this study, we explore the interaction between Type I IFN and foot-and-mouth disease virus (FMDV), focusing on the effect of this interaction on epithelial cell death. While several mathematical models have explored the interaction between interferon and viruses at a systemic level, with most of the work undertaken on influenza and hepatitis C, these cannot investigate why a virus such as FMDV causes extensive cell death in some epithelial tissues leading to the development of lesions, while other infected epithelial tissues exhibit negligible cell death.

View Article and Find Full Text PDF

Small ruminant brucellosis remains endemic in many low- and middle-income countries (LMICs), where it poses a major economic and public health burden. Lack of resources to support long-term vaccination, inherent characteristics of small ruminant production systems such as mixing of different flocks for grazing and limitations of the vaccines currently available, which can induce abortion in pregnant animals, have all hindered the effectiveness of control programmes. In the current study, the likely effect of different control scenarios on the seroprevalence of brucellosis among the small ruminant population in a hypothetical area of an endemic region was simulated using compartmental models.

View Article and Find Full Text PDF

Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. FMD virus (FMDV) shows a strong tropism for epithelial cells, and FMD is characterised by cell lysis and the development of vesicular lesions in certain epithelial tissues (for example, the tongue). By contrast, other epithelial tissues do not develop lesions, despite being sites of viral replication (for example, the dorsal soft palate).

View Article and Find Full Text PDF

Viral replication occurs within cells, with release (and onward infection) primarily achieved through two alternative mechanisms: lysis, in which virions emerge as the infected cell dies and bursts open; or budding, in which virions emerge gradually from a still living cell by appropriating a small part of the cell membrane. Virus budding is a poorly understood process that challenges current models of vesicle formation. Here, a plausible mechanism for arenavirus budding is presented, building on recent evidence that viral proteins embed in the inner lipid layer of the cell membrane.

View Article and Find Full Text PDF

The prevention, control and reduction of livestock diseases require a good understanding of how the underlying causative agents are transmitted. On livestock premises the rate of spread is strongly determined by the contact, both direct and indirect, between infectious and susceptible individuals. Here we consider contact amongst barn-housed dairy cattle, one of the most important UK livestock sectors.

View Article and Find Full Text PDF

Enveloped virus release is driven by poorly understood proteins that are functional analogs of the coat protein assemblies that mediate intracellular vesicle trafficking. We used differential electron density mapping to detect membrane integration by membrane-bending proteins from five virus families. This demonstrates that virus matrix proteins replace an unexpectedly large portion of the lipid content of the inner membrane face, a generalized feature likely to play a role in reshaping cellular membranes.

View Article and Find Full Text PDF

Zoonotic infections are on the increase worldwide, but most research into the biological, environmental and life science aspects of these infections has been conducted in separation. In this review we bring together contemporary research in these areas to suggest a new, symbiotic framework which recognises the interaction of biological, economic, psychological, and natural and built environmental drivers in zoonotic infection and transmission. In doing so, we propose that some contemporary debates in zoonotic research could be resolved using an expanded framework which explicitly takes into account the combination of motivated and habitual human behaviour, environmental and biological constraints, and their interactions.

View Article and Find Full Text PDF

Foot and mouth disease virus causes a livestock disease of significant global socio-economic importance. Advances in its control and eradication depend critically on improvements in vaccine efficacy, which can be best achieved by better understanding the complex within-host immunodynamic response to inoculation. We present a detailed and empirically parametrised dynamical mathematical model of the hypothesised immune response in cattle, and explore its behaviour with reference to a variety of experimental observations relating to foot and mouth immunology.

View Article and Find Full Text PDF

Successful control of livestock diseases requires an understanding of how they spread amongst animals and between premises. Mathematical models can offer important insight into the dynamics of disease, especially when built upon experimental and/or field data. Here the dynamics of a range of epidemiological models are explored in order to determine which models perform best in capturing real-world heterogeneities at sufficient resolution.

View Article and Find Full Text PDF

Control of many infectious diseases relies on the detection of clinical cases and the isolation, removal, or treatment of cases and their contacts. The success of such "reactive" strategies is influenced by the fraction of transmission occurring before signs appear. We performed experimental studies of foot-and-mouth disease transmission in cattle and estimated this fraction at less than half the value expected from detecting virus in body fluids, the standard proxy measure of infectiousness.

View Article and Find Full Text PDF

Foot-and-mouth disease virus (FMDV) causes an economically important disease of cloven-hoofed livestock; of interest here is the difference in lytic behaviour that is observed in bovine epithelium. On the skin around the feet and tongue, the virus rapidly replicates, killing cells, and resulting in growing lesions, before eventually being cleared by the immune response. In contrast, there is usually minimal lysis in the soft palate, but virus may persist in tissue long after the animal has recovered from the disease.

View Article and Find Full Text PDF

The maintenance of disease-free status from Foot-and-Mouth Disease is of significant socio-economic importance to countries such as the UK. The imposition of bans on the movement of susceptible livestock following the discovery of an outbreak is deemed necessary to prevent the spread of what is a highly contagious disease, but has a significant economic impact on the agricultural community in itself. Here we consider the risk of applying movement restrictions only in localised zones around outbreaks in order to help evaluate how quickly nation-wide restrictions could be lifted after notification.

View Article and Find Full Text PDF

This article has been withdrawn at the request of the Editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.

View Article and Find Full Text PDF

Foot-and-mouth disease is a highly contagious disease of cloven-hoofed animals, the control and eradication of which is of significant worldwide socio-economic importance. The virus may spread by direct contact between animals or via fomites as well as through airborne transmission, with the latter being the most difficult to control. Here, we consider the risk of infection to flocks or herds from airborne virus emitted from a known infected premises.

View Article and Find Full Text PDF

Over recent years there has been a growing interest in the application of mathematical techniques and methods to improve understanding of clinical problems. Mathematical methods permit accurate description and quantification of observations and processes. Wound healing is a clinical problem that needs support in order to improve management and understanding of the mechanisms that may disarrange healing processes.

View Article and Find Full Text PDF

Organisms that reproduce by sperm-dependent parthenogenesis are asexual clones that require sperm of a sexual host to initiate egg production, without the genome of the sperm contributing genetic information to the zygote. Although sperm-dependent parthenogenesis has some of the disadvantages of sex (requiring a mate) without the counterbalancing advantages (mixing of parental genotypes), it appears amongst a wide variety of species. We develop initial models for the density-dependent dynamics of animal populations with sperm-dependent parthenogenesis (pseudogamy or gynogenesis), based on the known biology of the common Enchytraeid worm Lumbricillus lineatus.

View Article and Find Full Text PDF