Whether aged hematopoietic stem and progenitor cells (HSPCs) have impaired DNA damage repair is controversial. Using a combination of DNA mutation indicator assays, we observe a 2- to 3-fold increase in the number of DNA mutations in the hematopoietic system upon aging. Young and aged hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) do not show an increase in mutation upon irradiation-induced DNA damage repair, and young and aged HSPCs respond very similarly to DNA damage with respect to cell-cycle checkpoint activation and apoptosis.
View Article and Find Full Text PDFMobilization of hematopoietic stem and progenitor cells (HSPCs) from bone marrow into peripheral blood by the cytokine granulocyte colony-stimulating factor (G-CSF) has become the preferred source of HSPCs for stem cell transplants. However, G-CSF fails to mobilize sufficient numbers of stem cells in up to 10% of donors, precluding autologous transplantation in those donors or substantially delaying transplant recovery time. Consequently, new regimens are needed to increase the number of stem cells in peripheral blood upon mobilization.
View Article and Find Full Text PDFMaintaining the stability of the genome is critical to cell survival and normal cell growth. Genetic modification of hematopoietic cells might bear an inherent increased risk for the accumulation of DNA mutations. It frequently requires cultivation of the cells under super-physiological oxygen levels, which can result in increased oxidative damage, as well as under super-physiological concentrations of cytokines, which might interfere with DNA-damage checkpoint activation and by this means might result in an increased mutational load.
View Article and Find Full Text PDFRetroviral-mediated delivery of the P140K mutant O(6)-methylguanine-DNA methyltransferase (MGMT(P140K)) into hematopoietic stem cells (HSC) has been proposed as a means to protect against dose-limiting myelosuppressive toxicity ensuing from chemotherapy combining O(6)-alkylating agents (e.g., temozolomide) with pseudosubstrate inhibitors (such as O(6)-benzylguanine) of endogenous MGMT.
View Article and Find Full Text PDFChromosomal translocation (8;21) is present in 10% to 15% of patients with acute myeloid leukemia. Expression of the AML1-ETO (AE) fusion protein alone is not sufficient to induce leukemia, but the nature of the additional genetic alterations is unknown. It is unclear whether AE facilitates acquisition of these cooperating events.
View Article and Find Full Text PDF