Publications by authors named "David Schleheck"

Reliable identification and precise quantification of microplastics pollution of the environment are essential prerequisites to comprehend the impact of microplastics on Earth's ecosystems. In this study, we propose a workflow to examine polyethylene terephthalate (PET) contamination of environmental surface waters by applying high-resolution nuclear magnetic resonance (NMR) spectroscopic approaches. The detection of PET by high-resolution NMR spectroscopy enables the unambiguous identification and - at the same time - precise quantification at atomic resolution independent from the size of the particles obtained from surface waters.

View Article and Find Full Text PDF

Long-chain aliphatic polyesters are emerging sustainable materials that exhibit polyethylene-like properties while being amenable to chemical recycling and biodegradation. However, varying polyester chemical structures results in markedly different degradation rates, which cannot be predicted from commonly correlated bulk polyester properties, such as polymer melting temperature. To elucidate these structure-degradability relationships, long-chain polyesters varying in their monomer composition and crystallinity were subjected to enzymatic hydrolysis, the rates of which were quantified via detection of formed monomers.

View Article and Find Full Text PDF

Diversity studies of aquatic picoplankton (bacterioplankton) communities using size-class filtration, DNA extraction, PCR and sequencing of phylogenetic markers, require a robust methodological pipeline, since biases have been demonstrated essentially at all levels, including DNA extraction, primer choice and PCR. Even different filtration volumes of the same plankton sample and, thus, different biomass loading of the filters, can distort the sequencing results. In this study, we designed an Arduino microcontroller-based flowmeter that records the decrease of initial (maximal) flowrate as proxy for increasing biomass loading and clogging of filters during plankton filtration.

View Article and Find Full Text PDF

Oxidation of phosphite (HPO) to phosphate (HPO) releases electrons at a very low redox potential (E= -690 mV) which renders phosphite an excellent electron donor for microbial energy metabolism. To date, two pure cultures of strictly anaerobic bacteria have been isolated that run their energy metabolism on the basis of phosphite oxidation, the Gram-negative (DSM 13687) and the Gram-positive (DSM 112739). Here, we describe the key enzyme for dissimilatory phosphite oxidation in these bacteria.

View Article and Find Full Text PDF

Taurine-respiring gut bacteria produce HS with ambivalent impact on host health. We report the isolation and ecophysiological characterization of a taurine-respiring mouse gut bacterium. Taurinivorans muris strain LT0009 represents a new widespread species that differs from the human gut sulfidogen Bilophila wadsworthia in its sulfur metabolism pathways and host distribution.

View Article and Find Full Text PDF

Phosphite is a stable phosphorus compound that, together with phosphate, made up a substantial part of the total phosphorus content of the prebiotic Earth's crust. Oxidation of phosphite to phosphate releases electrons at an unusually low redox potential (-690 mV at pH 7.0).

View Article and Find Full Text PDF

Mineral plastics are a promising class of bio-inspired materials that offer exceptional properties, like self-heal ability, stretchability in the hydrogel state, and high hardness, toughness, transparency, and non-flammability in the dry state along with reversible transformation into the hydrogel by addition of water. This enables easy reshape-ability and recycling like the solubility in mild acids to subsequently form mineral plastics again by base addition. However, current mineral plastics rely on petrochemistry, are hardly biodegradable, and thus persistent in nature.

View Article and Find Full Text PDF

We report a novel polyester material generated from readily available biobased 1,18-octadecanedicarboxylic acid and ethylene glycol possesses a polyethylene-like solid-state structure and also tensile properties similar to high density polyethylene (HDPE). Despite its crystallinity, high melting point (T =96 °C) and hydrophobic nature, polyester-2,18 is subject to rapid and complete hydrolytic degradation in in vitro assays with isolated naturally occurring enzymes. Under industrial composting conditions (ISO standard 14855-1) the material is biodegraded with mineralization above 95 % within two months.

View Article and Find Full Text PDF
Article Synopsis
  • Bilophila wadsworthia is an anaerobic bacterium in the human gut linked to diseases like appendicitis and colitis, and it uses dietary organosulfonates like taurine for energy, producing hydrogen sulfide that can affect gut health positively or negatively.
  • Recent research found that B. wadsworthia employs bacterial microcompartments (BMCs) for taurine metabolism, confirmed through various analyses including proteomic studies and electron microscopy.
  • This study reveals a new subclass of BMCs involved in biochemical reactions, enhancing our understanding of B. wadsworthia's metabolism and its role in gut hydrogen sulfide production, which has biotechnological implications.
View Article and Find Full Text PDF

A new strictly anaerobic bacterium, strain DYL19, was enriched and isolated with phosphite as the sole electron donor and CO as a single carbon source and electron acceptor from anaerobic sewage sludge sampled at a sewage treatment plant in Constance, Germany. It is a Gram-positive, spore-forming, slightly curved, rod-shaped bacterium which oxidizes phosphite to phosphate while reducing CO to biomass and small amounts of acetate. Optimal growth is observed at 30 °C, pH 7.

View Article and Find Full Text PDF

Recurring blooms of filamentous, red-pigmented and toxin-producing cyanobacteria have been reported in numerous deep and stratified prealpine lakes, with the exception of Lake Constance. In a 2019 and 2020 Lake Constance field campaign, we collected samples from a distinct red-pigmented biomass maximum below the chlorophyll-a maximum, which was determined using fluorescence probe measurements at depths between 18 and 20 m. Here, we report the characterization of these deep water red pigment maxima (DRM) as cyanobacterial blooms.

View Article and Find Full Text PDF

Denitrifying Betaproteobacteria play a key role in the anaerobic degradation of monoaromatic hydrocarbons. We performed a multi-omics study to better understand the metabolism of the representative organism Georgfuchsia toluolica strain G5G6 known as a strict anaerobe coupling toluene oxidation with dissimilatory nitrate and Fe(III) reduction. Despite the genomic potential for degradation of different carbon sources, we did not find sugar or organic acid transporters, in line with the inability of strain G5G6 to use these substrates.

View Article and Find Full Text PDF

A rhamnose-degrading bacterium, strain BoRhaA, was isolated from profundal sediment of Lake Constance in agar dilution series with l-rhamnose as substrate and with a background lawn of Methanospirillum hungatei. The isolated strain was a motile rod that stained Gram positive. Growth was observed within a pH range of 4.

View Article and Find Full Text PDF

Responses of the microbiota to diet are highly personalized but mechanistically not well understood because many metabolic capabilities and interactions of human gut microorganisms are unknown. Here we show that sulfoquinovose (SQ), a sulfonated monosaccharide omnipresent in green vegetables, is a selective yet relevant substrate for few but ubiquitous bacteria in the human gut. In human feces and in defined co-culture, Eubacterium rectale and Bilophila wadsworthia used recently identified pathways to cooperatively catabolize SQ with 2,3-dihydroxypropane-1-sulfonate as a transient intermediate to hydrogen sulfide (HS), a key intestinal metabolite with disparate effects on host health.

View Article and Find Full Text PDF

Background: Degradation of acetone by aerobic and nitrate-reducing bacteria can proceed via carboxylation to acetoacetate and subsequent thiolytic cleavage to two acetyl residues. A different strategy was identified in the sulfate-reducing bacterium Desulfococcus biacutus that involves formylation of acetone to 2-hydroxyisobutyryl-CoA.

Results: Utilization of short-chain ketones (acetone, butanone, 2-pentanone and 3-pentanone) and isopropanol by the sulfate reducer Desulfosarcina cetonica was investigated by differential proteome analyses and enzyme assays.

View Article and Find Full Text PDF

The critical role of bacterial biofilms in chronic human infections calls for novel anti-biofilm strategies targeting the regulation of biofilm development. However, the regulation of biofilm development is very complex and can include multiple, highly interconnected signal transduction/response pathways, which are incompletely understood. We demonstrated previously that in the opportunistic, human pathogen P.

View Article and Find Full Text PDF

During the 20th century, many lakes in the Northern Hemisphere were affected by increasing human population and urbanization along their shorelines and catchment, resulting in aquatic eutrophication. Ecosystem monitoring commenced only after the changes became apparent, precluding any examination of timing and dynamics of initial community change in the past and comparison of pre- and postimpact communities. Peri-Alpine Lake Constance (Germany) underwent a mid-century period of eutrophication followed by re-oligotrophication since the 1980s and is now experiencing warm temperatures.

View Article and Find Full Text PDF

Bacterial degradation of the sugar sulfoquinovose (SQ, 6-deoxy-6-sulfoglucose) produced by plants, algae, and cyanobacteria, is an important component of the biogeochemical carbon and sulfur cycles. Here, we reveal a third biochemical pathway for primary SQ degradation in an aerobic strain. An isomerase converts SQ to 6-deoxy-6-sulfofructose (SF).

View Article and Find Full Text PDF

The genus Desulfoluna comprises two anaerobic sulfate-reducing strains, D. spongiiphila AA1 and D. butyratoxydans MSL71, of which only the former was shown to perform organohalide respiration (OHR).

View Article and Find Full Text PDF

Hydrogen sulfide (HS) production in the intestinal microbiota has many contributions to human health and disease. An important source of HS in the human gut is anaerobic respiration of sulfite released from the abundant dietary and host-derived organic sulfonate substrate in the gut, taurine (2-aminoethanesulfonate). However, the enzymes that allow intestinal bacteria to access sulfite from taurine have not yet been identified.

View Article and Find Full Text PDF

Sulfoquinovose (SQ, 6-deoxy-6-sulfoglucose) is produced by plants and other phototrophs and its biodegradation is a relevant component of the biogeochemical carbon and sulfur cycles. SQ is known to be degraded by aerobic bacterial consortia in two tiers via C-organosulfonates as transient intermediates to CO, water and sulfate. In this study, we present a first laboratory model for anaerobic degradation of SQ by bacterial consortia in two tiers to acetate and hydrogen sulfide (HS).

View Article and Find Full Text PDF

Lysine degradation has remained elusive in many organisms including Escherichia coli. Here we report catabolism of lysine to succinate in E. coli involving glutarate and L-2-hydroxyglutarate as intermediates.

View Article and Find Full Text PDF

The binding sites of YihW, an uncharacterized DeoR-family transcription factor (TF) of Escherichia coli K-12, were identified using Genomic SELEX screening at two closely located sites, one inside the spacer between the bidirectional transcription units comprising the yihUTS operon and the yihV gene, and another one upstream of the yihW gene itself. Recently the YihUTS and YihV proteins were identified as catalysing the catabolism of sulfoquinovose (SQ), a hydrolysis product of sulfoquinovosyl diacylglycerol (SQDG) derived from plants and other photosynthetic organisms. Gel shift assay in vitro and reporter assay in vivo indicated that YihW functions as a repressor for all three transcription units.

View Article and Find Full Text PDF

The importation of construction principles or even constituents from biology into materials science is a prevailing concept. Vice versa, the cellular level modification of living systems with nonnatural components is much more difficult to achieve. It has been done for analytical purposes, for example, imaging, to learn something about intracellular processes.

View Article and Find Full Text PDF