Basil downy mildew caused by is a disease of sweet basil () production worldwide. In this study, sweet basil was grown in plant growth chambers and inoculated with sporangia of harvested from previously infected plants. Plants were placed in closed, clear plastic bags and leaves harvested over time and observed using scanning electron microscopy.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
August 2017
Two isolates of Gram-reaction-positive, facultatively anaerobic, motile, rod-shaped, endospore-forming bacteria were identified during a survey of the diversity of strains belonging to the genus Bacillus deposited in the Agriculture Research Service Culture Collection. These strains were originally isolated from soil in Evolution Canyon III (Israel) in a survey of ecological diversification. Phylogenetic analysis of the 16S rRNA gene of strains NRRL B-41294T and NRRL B-41327T determined they were closely related to members of the Bacillus licheniformis clade.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
August 2016
Two isolates of a Gram-stain-positive, strictly aerobic, motile, rod-shaped, endospore-forming bacterium were identified during a survey of the Bacillus diversity of the Agriculture Research Service Culture Collection. These strains were originally isolated from soil and have a phenotype of producing a dark pigment on tryptic soy agar. Phylogenetic analysis of the 16S rRNA gene indicated that these strains were related most closely to Bacillus subtilis subsp.
View Article and Find Full Text PDFBacillus axarquiensis and Bacillus malacitensis were previously reported to be later heterotypic synonyms of Bacillus mojavensis, based primarily on DNA-DNA relatedness values. We have sequenced draft genomes of Bacillus axarquiensis NRRL B-41617T and Bacillus malacitensis NRRL B-41618T. Comparative genomics and DNA-DNA relatedness calculations showed that while Bacillus axarquiensis and Bacillus malacitensis are synonymous with each other, they are not synonymous with Bacillus mojavensis.
View Article and Find Full Text PDFThe production of microbial biomass in liquid media often represents an indispensable step in the research and development of bacterial and fungal strains. Costs of commercially prepared nutrient media or purified media components, however, can represent a significant hurdle to conducting research in locations where obtaining these products is difficult. A less expensive option for providing components essential to microbial growth in liquid culture is the use of extracts of fresh or dried plant products obtained by using hot water extraction techniques.
View Article and Find Full Text PDFMedia and culturing protocols were identified that supported the formation of submerged conidia and microsclerotia (MS) by Trichoderma harzianum Rifai strain T-22 using liquid culture fermentation. Liquid media with a higher carbon concentration (36 g L(-1)) promoted MS formation at all C:N ratios tested. Hyphae aggregated to form MS after 2 d growth and after 7 d MS were fully melanized.
View Article and Find Full Text PDFSurface properties play an important role in plant-microbe interactions and determine if microbial propagules adhere to the surface of a plant. Fusarium head blight is an important disease of wheat that is initiated by the pathogen colonizing the wheat head. To better understand how surface properties of wheat may affect disease development and spray applications, the surface properties of wheat (Triticum aestivum L.
View Article and Find Full Text PDFThe objective of the study was to identify the lipopetides associated with three Bacillus subtilis strains. The strains are antagonists of Gibberella zeae, and have been shown to be effective in reducing Fusarium head blight in wheat. The lipopeptide profile of three B.
View Article and Find Full Text PDFThe microbiota of 84 different agricultural soils were transferred to separate samples of a γ irradiation-sterilized field soil enriched with potato periderm, and the resulting soils were assayed for biological suppressiveness to Phytophthora erythroseptica and their effect on zoospore production. The 13 most suppressive soil samples, which reduced zoospore production by 14 to 93% and disease severity on tubers by 6 to 21%, were used to isolate 279 organisms. Fourteen strains that reduce pink rot infections in preliminary tests were selected for further study.
View Article and Find Full Text PDFABSTRACT Fusarium head blight (FHB), caused by Gibberella zeae, is a devastating disease of wheat worldwide. Cryptococcus nodaensis OH 182.9 is an effective biocontrol agent for this disease.
View Article and Find Full Text PDFCryptococcus flavescens (previously reported as C. nodaensis), a biological control agent of Fusarium head blight, has been previously shown to have improved desiccation tolerance after cold adaptation. The goal of the current study was to determine the effect of cold adaptation on the physicochemical properties of C.
View Article and Find Full Text PDFEfforts to reduce mycotoxin contamination in food logically start with minimizing plant infection by mycotoxin producing pathogens. Fusarium graminearum (perfect state, Gibberella zeae) infects wheat heads at flowering, causing the disease Fusarium head blight (FHB) and losses of over 2.6 billion dollars in the U.
View Article and Find Full Text PDF