Nanowires (NW) have been extensively studied for spp. and spp. and are mostly produced by Type IV pili or multiheme c-type cytochrome.
View Article and Find Full Text PDFSensing surface topography, an upsurge of signaling biomolecules, and upholding cellular homeostasis are the rate-limiting spatio-temporal events in microbial attachment and biofilm formation. Initially, a set of highly specialized proteins, . conditioning protein, directs the irreversible attachment of the microbes.
View Article and Find Full Text PDFParticulate methane monooxygenase (pMMO), a membrane-bound enzyme having three subunits (α, β, and γ) and copper-containing centers, is found in most of the methanotrophs that selectively catalyze the oxidation of methane into methanol. Active sites in the pMMO of OB3b were determined by docking the modeled structure with ethylbenzene, toluene, 1,3-dibutadiene, and trichloroethylene. The docking energy between the modeled pMMO structure and ethylbenzene, toluene, 1,3-dibutadiene, and trichloroethylene was -5.
View Article and Find Full Text PDFVarious microorganisms thrive under extreme environments, like hot springs, hydrothermal vents, deep marine ecosystems, hyperacid lakes, acid mine drainage, high UV exposure, and more. To survive against the deleterious effect of these extreme circumstances, they form a network of biofilm where exopolysaccharides (EPSs) comprise a substantial part. The EPSs are often polyanionic due to different functional groups in their structural backbone, including uronic acids, sulfated units, and phosphate groups.
View Article and Find Full Text PDFAdsorption of conditioning films on a solid surface is the first step in the development of biofilms. With the goal of understanding the preliminary adhesion mechanisms of cyanobacteria on photobioreactor (PBR) materials to prevent biofouling, the physical changes occurring on PBR materials were investigated during the initial adhesion and biofilm formation by sp. PCC 7120, a cyanobacterium that is genetically modified to produce linalool.
View Article and Find Full Text PDFFirmicutes is almost a ubiquitous phylum. Several genera of this group, for instance, , are recognized for decomposing plant organic matter and for producing thermostable ligninolytic enzymes. Amplicon sequencing was used in this study to determine the prevalence and genetic diversity of the Firmicutes in two distinctly related environmental samples-South Dakota Landfill Compost (SDLC, 60 °C), and Sanford Underground Research Facility sediments (SURF, 45 °C).
View Article and Find Full Text PDFSystemic lupus erythematosus (SLE) is an autoimmune inflammatory disease characterized by deposits of immune complexes (ICs) in organs and tissues. The expression of FcγRIIA by human platelets, which is their unique receptor for immunoglobulin G antibodies, positions them to ideally respond to circulating ICs. Whereas chronic platelet activation and thrombosis are well-recognized features of human SLE, the exact mechanisms underlying platelet activation in SLE remain unknown.
View Article and Find Full Text PDFThe production, characterization and bioactivities of exopolysaccharides (EPSs) from a thermophilic bacterium Geobacillus sp. strain WSUCF1 were investigated. Using glucose as a carbon source 525.
View Article and Find Full Text PDFThe mimicking of evolution on a laboratory timescale to enhance biocatalyst specificity, substrate utilization activity, and/or product formation, is an effective and well-established approach that does not involve genetic engineering or regulatory details of the microorganism. The present work employed an evolutionary adaptive approach to improve the lignocellulose deconstruction capabilities of the strain by inducing the expression of laccase, a multicopper oxidase, in sp. strain WSUCF1.
View Article and Find Full Text PDFAlthough cyanobacteria are a common group of microorganisms well-suited to utilization in photobioreactors (PBRs), studies of cyanobacteria fouling and its prevention are scarce. Using a cyanobacterium, sp. PCC 7120, which had been genetically modified to enhance linalool production, the formation of conditioning films and the effects of these on the physico-chemical surface properties of various PBR materials during initial adhesion and biofilm formation were investigated.
View Article and Find Full Text PDFThe transcription factor IRF8 (ICSBP) is required for the development and maturation of myeloid cells (dendritic cells, monocytes, macrophages), and for expression of intrinsic anti-microbial function such as antigen capture, processing and presentation to lymphoid cells, and for activation of these cells in response to cytokines and pro-inflammatory stimuli (IFN-γ, IFN-β, LPS). IRF8 deficiency in humans causes a severe primary immunodeficiency presenting as susceptibility to infections, complete or severe depletion of blood dendritic cells (DC) subsets, depletion of CD14 and CD16 monocytes and reduced numbers and impaired activity of NK cells. In genome-wide association studies (GWAS), sequence variants near IRF8 are significant risk factors for multiple chronic inflammatory diseases in humans including inflammatory bowel disease, lupus, rheumatoid arthritis, multiple sclerosis, and several others.
View Article and Find Full Text PDFInvestigations on microbial electrocatalysis as a strategy for enhancing the rates of substrate utilization leading to enhanced yield of biomass and enhanced biofilm formation are reported. A thermophilic Geobacillus sp. strain WSUCF1 (60 °C), a potential lignocellulose degrading microorganism was used as the electrocatalyst.
View Article and Find Full Text PDFJ Microbiol Methods
December 2019
Successful and efficient extraction of high quality, high molecular weight genomic DNA from the environmental samples is an essential primary step to understand the genetic, metabolic and evolutionary characteristics of the microbial communities. Deep mine biofilm samples that contain high amounts of mucoid exopolysaccharide often pose difficulties to obtaining refined community DNA. To circumvent this hindrance, we report our "MINES" method which we developed for optimal biofilm DNA recovery suitable for all types of high-resolution downstream applications.
View Article and Find Full Text PDFSystemic lupus erythematosus (SLE) is characterized by the development of autoantibodies against diverse self-antigens with damage to multiple organs. Immunization with the SLE autoantigen β -glycoprotein I (β GPI) and lipopolysaccharide (LPS), a known trigger of necroptosis, induces a murine model of SLE. We hypothesized that necroptotic cells, like apoptotic cells, provide a "scaffold" of cellular self-antigens, but, unlike apoptotic cells, necroptotic cells do so in a proinflammatory and immunogenic context.
View Article and Find Full Text PDFGeobacillus sp. WSUCF1 is a Gram-positive, spore-forming, aerobic and thermophilic bacterium, isolated from a soil sample obtained from a compost facility. Strain WSUCF1 demonstrated EPS producing capability using different sugars as the carbon source.
View Article and Find Full Text PDFThermophiles are promising options to use as electrocatalysts for bioelectrochemical applications including microbial electrolysis. They possess several interesting characteristics such as ability to catalyze a broad range of substrates at better rates and over a broad range of operating conditions, and better electrocatalysis/electrogenic activity over mesophiles. However, a very limited number of investigations have been carried out to explore the microbial reactions/pathways and the molecular mechanisms that contribute to better electrocatalysis/electrolysis in thermophiles.
View Article and Find Full Text PDFThe aim of this study was to investigate the effect of atmospheric pressure cold plasma on the microbial substrate utilization and biomass yield in a thermophilic strain. Geobacillus sp. strain WSUCF1, a thermophile capable of producing cellulolytic enzymes with higher activity was used for this investigation.
View Article and Find Full Text PDFAnti-phospholipid syndrome (APS) and systemic lupus erythematosus (SLE) are autoimmune diseases characterized by autoantibody production and autoantibody-related pathology. Anti-phospholipid antibodies (aPL) are found in all patients with APS and in 20-30% of individuals with SLE. aPL recognize a number of autoantigens, but the primary target in both APS and SLE is β2-glycoprotein I (β2GPI).
View Article and Find Full Text PDFNumerous microorganisms inhabiting harsh niches produce exopolysaccharides as a significant strategy to survive in extreme conditions. The exopolysaccharides synthesized by extremophiles possess distinctive characteristics due to the varied harsh environments which stimulate the microorganisms to produce these biopolymers. Despite many bioprocesses have been designed to yield exopolysaccharides, the production of exopolysaccharides by extremophiles is inefficient compared with mesophilic and neutrophilic exopolysaccharide producers.
View Article and Find Full Text PDFBioresour Technol
October 2018
The aim of the present work was to use a thermophilic consortium for H production using lignocellulosic biomass in a single pot. The thermophilic consortium, growing at 60 °C utilized both glucose and xylose, making it an ideal source of microbes capable of utilizing and fermenting both hexose and pentose sugars. The optimization of pH, temperature, and substrate concentration increased the H production from 1.
View Article and Find Full Text PDFSystemic lupus erythematosus is a prototypic model for B-cell epitope spread in autoimmunity. Autoantibodies to numerous molecularly distinct self-antigens emerge in a sequential manner over several years, leading to disease manifestations. Among the earliest autoantibodies to appear are those targeting phospholipid-binding proteins, particularly β2-glycoprotein I.
View Article and Find Full Text PDFThe aim of this work was to study biologically reduced graphene oxide (RGO) for engineering the surface architecture of the bioelectrodes to improve the performance of Bioelectrochemical System (BES). Gluconobacter roseus mediates the reduction of graphene oxide (GO). The RGO modified bioelectrodes produced a current density of 1 mA/cm and 0.
View Article and Find Full Text PDFHuman waste simulants were for the first time converted into biohydrogen by a newly developed anaerobic microbial consortium via thermophilic consolidated bioprocessing. Four different BioH-producing consortia (denoted as C1, C2, C3 and C4) were isolated, and developed using human waste simulants as substrate. The thermophilic consortium C3, which contained Thermoanaerobacterium, Caloribacterium, and Caldanaerobius species as the main constituents, showed the highest BioH production (3.
View Article and Find Full Text PDFModified drop weight impact tests were performed on SiO_{2}-ethylene glycol concentrated suspensions. Counterintuitive impact-induced solidlike behavior and elasticity, causing significant deceleration and rebound of the impactor, were observed. We provide evidence that the observed large deceleration force on the impactor mainly originates from the hydrodynamic force, and that the elasticity arises from the short-range repulsive force of a solvation layer on the particle surface.
View Article and Find Full Text PDFAutoimmune diseases result from a break in immune tolerance leading to an attack on self-antigens. Autoantibody levels serve as a predictive tool for the early diagnosis of many autoimmune diseases, including type 1 diabetes. We find that a genetic locus on mouse chromosome 12 influences the affinity maturation of antibodies as well as autoantibody production.
View Article and Find Full Text PDF