Here we describe an anti-prostate-specific membrane antigen (PSMA) minibody (IAB2MA) conjugated to an octadentate, macrocyclic chelator based on four 1-hydroxypyridin-2-one coordinating units (Lumi804 [L804]) labeled with Zr (PET imaging) and Lu (radiopharmaceutical therapy), with the goal of developing safer and more efficacious treatment options for prostate cancer. L804 was compared with the current gold standard chelators, DOTA and deferoxamine (DFO), conjugated to IAB2MA for radiolabeling with Lu and Zr in cell binding, preclinical biodistribution, imaging, dosimetry, and efficacy studies in the PSMA-positive PC3-PIP tumor-bearing mouse model of prostate cancer. Quantitative radiolabeling (>99% radiochemical yield) of L804-IAB2MA with Lu or Zr was achieved at ambient temperature in under 30 min, comparable to Zr labeling of DFO-IAB2MA.
View Article and Find Full Text PDFBackground: Malignant gliomas are deadly tumours with few therapeutic options. Although immunotherapy may be a promising therapeutic strategy for treating gliomas, a significant barrier is the CD11b tumour-associated myeloid cells (TAMCs), a heterogeneous glioma infiltrate comprising up to 40% of a glioma's cellular mass that inhibits anti-tumour T-cell function and promotes tumour progression. A theranostic approach uses a single molecule for targeted radiopharmaceutical therapy (TRT) and diagnostic imaging; however, there are few reports of theranostics targeting the tumour microenvironment.
View Article and Find Full Text PDFA series of highly luminescent europium(III) complexes which exhibit photoluminescence from the Eu(III) center following energy transfer from the UV absorbing organic sensitizer have been investigated using a combination of ultrafast optical transient absorption and Eu L3 X-ray transient absorption techniques. We have previously demonstrated that the latter can be used as a signature of 4f-4f excitation responsible for the photoluminescence in these Eu(III) coordination complexes, but the long time scale of the earlier measurements did not allow direct observation of the ligand-to-metal energy transfer step, preventing a determination of the sensitization mechanism. Here, we provide the first direct experimental verification that Dexter electron exchange from the ligand triplet state is the dominant energy transfer mechanism in these photoluminescent systems.
View Article and Find Full Text PDFA series of 10 tetradentate 1-hydroxy-pyridin-2-one (1,2-HOPO) ligands and corresponding eight-coordinated photoluminescent Eu(III) and Sm(III) complexes were prepared. Generally, the ligands differ by the linear (nLI) aliphatic linker length, from 2 to 8 methylene units between the bidentate 1,2-HOPO chelator units. The photoluminescent quantum yields (Φtot) were found to vary with the linker length, and the same trend was observed for the Eu(III) and Sm(III) complexes.
View Article and Find Full Text PDFWe report the preparation and new insight into photophysical properties of luminescent hydroxypyridonate complexes [M(III)L](-) (M = Eu or Sm) of the versatile 3,4,3-LI(1,2-HOPO) ligand (L). We report the crystal structure of this ligand with Eu(III) as well as insights into the coordination behavior and geometry in solution by using magnetic circular dichroism. In addition TD-DFT calculations were used to examine the excited states of the two different chromophores present in the 3,4,3-LI(1,2-HOPO) ligand.
View Article and Find Full Text PDFWe report time-resolved X-ray absorption near edge structure (TR-XANES) measurements at the Eu L3 edge upon photoexcitation of several Eu(III)-based luminescent lanthanide complexes. We find an unambiguous signature of the 4f intrashell excitation that occurs upon energy transfer from the photoactive organic antennas to the lanthanide species. Phenomenologically, this observation provides the basis for direct investigation of a crucial step in the energy transfer pathways that lead to sensitized luminescence in lanthanide-based dyes.
View Article and Find Full Text PDF